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Abstract. Due to climate change, forest regions in California are
increasingly experiencing severe wildfires, with other issues affecting the
rest of the world. Machine learning (ML) and artificial intelligence (AI)
models have emerged to predict wildfire hazards and aid mitigation
efforts. However, the wildfire prediction modelling domain faces incon-
sistencies due to database manipulations for multi-class classification. To
help to address this issue, our paper focuses on creating wildfire predic-
tion models through One-class classification algorithms: Support Vector
Machine, Isolation Forest, AutoEncoder, Variational AutoEncoder, Deep
Support Vector Data Description, and Adversarially Learned Anomaly
Detection. To minimise bias in the selection of the training and testing
data, Five-Fold Cross-Validation was used to validate all One-class ML
models. These One-class ML models outperformed Two-class ML models
using the same ground truth data, with mean accuracy levels between
90 and 99 percent. Shapley values were used to derive the most impor-
tant features affecting the wildfire prediction model, which is a novel
contribution to the field of wildfire prediction. Among the most impor-
tant factors were the seasonal maximum and mean dew point temper-
atures. In providing access to our algorithms, using Python Flask and
a web-based tool, the top-performing models were operationalized for
deployment as a REST API, with the potential to strengthen wildfires
mitigation strategies.

Keywords: One-class SVM · ANN-AutoEncoder · ANN-Variational
Auto-Encoder · Isolation Forest · scikit-learn · PyOD

1 Introduction

Wildfires have become a significant issue, destroying thousands of square kilome-
tres of forest yearly. This type of disaster has a global impact on environments,
the economy, and health. Natural wildfires are caused primarily by lightning, vol-
canic eruptions, dry climate, and vegetation. However, it has been documented
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that at least 90% of wildfires are caused by human behaviour, such as smoking
in public, camping fires, and garbage burning [28]. As a result, continuous moni-
toring is required to address this serious issue and, more importantly, to forecast
the possibility of widespread and intense wildfires. This brings us to the fun-
damental challenge that the public and fire management authorities inevitably
face: the possibility of predicting wildfires well in advance to take timely action
to mitigate damages.

ML and AI methods may aid researchers in developing models for monitor-
ing and predicting wildfire anomalies in advance. However, technical limitations
and environmental issues impede the process of monitoring and detecting wild-
fire occurrences and spread. Furthermore, the specific characteristics that may
influence wildfire ignition remain as a research gap. This is due primarily to
significant changes in atmospheric conditions, which frequently include air tem-
perature, relative humidity, wind speed and direction, and spatial and temporal
time-bounded features [21].

Many ML solutions for wildfire prediction have been developed by
researchers, but only a few solutions make it to the deployment stage when
it comes to practical use. Incorporating ML models into an Application Pro-
gramming Interface (API) to develop user-friendly applications would improve
the wildfire prediction domain. We look to address this opportunity, and provide
the following contributions:

1. Using a fire incidence data set, we demonstrate how the application of appro-
priate One-class classification algorithms are better suited towards fire risk
prediction than Two-class models.

2. The use of Shapley values identify features from the One-class ML models that
significantly influence the risk of a wildfire event, providing explainability for
our models.

3. A proposed architecture for the development and deployment of a web-based
wildfire prediction tool that adopts the best One-class ML model.

For this study, the state of California was selected as the context for predict-
ing the occurrence of wildfires. The experiment generated a set of historical fire
data from California (2012 to 2016). Multiple One-class ML algorithms: Support
Vector Machine (SVM), Isolation Forest (IF), Autoencoder (AE), Variational
AutoEncoder (VAE), Deep Support Vector Data Description (DeepSVDD), and
Adversarially Learned Anomaly Detection (ALAD) were investigated in these
experiments. Repeated Five-Fold Cross-Validation (CV) was applied to the train-
ing data set to generate these models, yielding accuracy ranging from 90% to
99%.

The rest of the paper is organized as follows. In Sect. 2 we provide the study
background and describe the One-class ML algorithms used in our experiments.
Next, in Sect. 3 we describe the data set for the Californian case study. Our
methodology is then provided in Sect. 4. The results of applying our methodology
are presented in Sect. 5. In Sect. 6, the deployment of the ML models is discussed,
followed by the web-based prototype evaluation in Sect. 7. Finally, in Sect. 8 we
summarise our findings and outline opportunities for future work.
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2 Background

Defining a negatively unbiased sample data set for complex events such as wild-
fires is difficult. Without properly validating these data points, a slew of non-fire
data points could be generated for a given location, date, and time. This prob-
lem can be solved by using a One-class classification model that defines a class
boundary based on positive data labels [15].

When the model outcome probability is greater than the threshold value
in One-class binary classification, it is labelled as an inlier (•) and when the
model outcome probability is less than the threshold value in One-class binary
classification, it is labelled as an outlier (?), which are based on the model output
probability and the threshold value, as shown in Fig. 1a. Choosing an accurate
threshold is critical for correctly classifying inliers and outliers. In principle, the
classification boundary of One-class learning accepts many positive data labels
while rejecting only a few outliers (see Fig. 1a). Positive data labels are used to
train the model in One-class learning, whereas outliers are considered negative
data labels or non-fire events.

Fig. 1. The distinction between One-class classification (a) and Two-class classification
(b). Compared with a One-class classification model, a Two-class classification model
accepts inlier (positive) data labels but rejects outlier labels.

As noted above, the model’s outcome probabilities, as well as its inlier and
outlier predictions, are affected by the threshold value. When the threshold is
greater than a certain value for a given prediction instance [10, p. 159], it will be
detected as a fire (inlier). For our experiments, each One-class ML algorithm’s
functionality is described below.

In terms of our approaches, the Support Vector Machine (SVM) is a super-
vised learning model that analyses data and identifies patterns for both clas-
sification and regression tasks [6]. The One-class variant refers to two types
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of One-class SVM (OCSVM). The standard OCSVM uses a sphere of minimal
volume to contain a specified proportion of training instances [31]. The other
OCSVM trains objects using a hyperplane in a kernel feature space. Data is
transformed to a higher dimensional space in order to investigate the possibil-
ity of constructing a hyperplane decision boundary, with the assumption that all
training points belong to one class and all non-training points belong to another.
To generate the ML model in the experiments, the latter OCSVM algorithm was
used. The One-class OCSVM operates in such a way that standard data clustered
into a single region has a high density, while outliers are detected as low-density
regions. New data points can be tested based on density regions to detect normal
or outlier cases.

Isolation Forest (IF) is a binary random forest approach in which each node
randomly chooses a dimension, and then a splitting threshold [17]. It will keep
going until each node has a single sample. This method is used to build an
ensemble of trees. A sample with exceptional values has a higher chance of being
isolated early in the growth of the tree by chance than samples in clusters; as a
result, the average depth of samples in the ensemble of trees directly affects the
abnormality score [17].

A recent overview of ML and AI algorithms used in wildfire prediction are
summarised in [2] which discussed models that are based on Artificial Neural
Networks (ANN) including ones based on Radial Basis Function ANNs [23]. For
our experiments we similarly adopted an AutoEncoder (AE) which is a type of
multi-layer ANN for unsupervised learning that copies input values to output
values, allowing mapping from high-dimensional space to lower-dimensional rep-
resentation [26]. To reduce reconstruction errors, input data is encoded in the
hidden layers. This method forces the hidden layers to learn the most patterns
in the data while ignoring the “noise”. Anomalies are defined as input data with
a high reconstruction error. In contrast to an AE, the Variational AutoEncoder
(VAE) learns the parameters of a probability distribution representing the data,
which could make the model more adept at spotting anomalies [26].

Like AE and VAE, the goal of DeepSVDD [29] is to learn network parameters
collaboratively while minimising the average distance from all data representa-
tions to the center for this algorithm. Normal data are closely mapped to the
center for this algorithm, whereas anomalous data are mapped farther from the
centre or outside a hypersphere [16]. In DeepSVDD, ANN are used as One-class
classifiers, where any data points which the neural network rejects is categorised
as an outlier. Network weights are derived from the training data. These trained
network weights are then used in the process of testing new data instances.
We have selected DeepSVDD [29] and ALAD [34] due to their popularity in
performing prediction domains.

Finally, ALAD [34] is a reconstruction-based anomaly detection technique
that assesses how well a sample is reconstructed by a Generative Adversarial
Network (GAN). GANs are adopted as they can model complex high-dimensional
distributions of real-world data, implying that they could be useful in anomaly
detection. ALAD is a promising approach in complex, high-dimensional data.
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ALAD is based on bidirectional GANs and contains an encoder network that
maps data samples to latent variables. During training, this learns an encoder
from the data space to the latent space, making it significantly more efficient
at test time. ALAD assesses how far a sample is from its reconstruction by the
GAN, where normal samples should be accurately reconstructed while anomalous
samples are likely to be poorly reconstructed.

The OCSVM algorithm from the Python scikit-learn package [27] was
used for the experiments. All the remaining methods including an alternative
implementation of the OCSVM algorithm were taken from the Python PyOD
package [35].

3 Data Set

The case study is based on California in the United States of America, which
spans a land area of 423,970 square km1. From 2012 to 2016, 7,335 wildfire events
were recorded in California by US Federal land management agencies, NOAA,
the American Scientific Agency, MODIS 500m resolution satellite images, and
the US Census Bureau2. The variables for the Californian data set were acquired
accordingly, and are listed in Table 1. The collected data were combined into a
data set that was geolocated and transformed into an appropriate format for
further analysis3. These procedures were followed for the implementation of the
use case in California.

4 Methodology

As demonstrated in Fig. 2, developing a decision support system for wildfire
prediction involves a number of steps, including data preparation, processing,
modelling, validation of ML models, and the potential for deployment of ML
models.

Wildfire features, weather features, Live Fuel Moisture Content (LFMC) fea-
tures, and social features are the four input categories that are used. The data set
was encoded and scaled to test the ML models based on One-class classification.
Below is a more thorough explanation of these steps.

The relevant classifier function calls were used during model training to fit
the model to the data. Hyper-parameter tuning was used to configure the func-
tion’s hyper-parameters, eventually producing one ML model for each classifier
type that performed the best. During the tuning process, the hyper-parameters
of the models were adjusted to achieve the best accuracy based on the most

1 https://www.fire.ca.gov/our-impact/statisticsStatistics on CA wildfires and CAL
FIRE activity.

2 A different case study with 2.2 million acres burned in Western Australia was con-
ducted as the second case study. However, due to page limitations, we are unable to
discuss this data set and its associated results in this paper.

3 This thesis provides more detail on the steps involved in data pre-processing [10].

https://www.fire.ca.gov/our-impact/statistics
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Table 1. Variables used for ML models - Californian data set (7,335 Events)

No. Feature Description Prior Research

1 IDATE Fire Occurrence Date (Month & Date as an Integer) [1]

2 LAT Fire location latitude (degrees) [1,11,33]

3 LON Fire location longitude (degrees) [1,11,33]

4 ELEVATION_m Fire location elevation (in meters) [1,7,11]

5 ACRES Acres burnt (in acres)

6 PPT_mm Precipitation (in mm for the fire incident date) [1,11,13]

7 TMIN_c Minimum temperature (in Celsius for the fire inci-
dent date)

[11,13]

8 TMEAN_c Mean temperature (in Celsius for the fire incident
date)

[11,13]

9 TMAX_c Maximum temperature (in Celsius for the fire inci-
dent date)

[1,11,13]

10 TDMEAN_c Mean dew point temperature (in Celsius for the fire
incident date)

[11,13]

11 VPDMIN_hpa Minimum vapor pressure (in hectopascals) - Califor-
nian use case

[7]

12 VPDMAX_hpa Maximum vapor pressure (in hectopascals) - Califor-
nian use case

[7]

13 lfmc_mean Mean fuel moisture for a particular day (numeric) [11]

14 lfmc_stdv Standard deviation of fuel moisture for a particular
day (numeric)

[11]

15 Mean_Sea_Level _Pressure Mean sea level pressure of the nearest weather sta-
tion to the wildfire event (in hectopascals) - (Univer-
sal Kriging)

[25]

16 Mean_Station _Pressure Nearest mean weather station pressure to the wildfire
event (in hectopascasl) - (Universal Kriging)

[25]

17 Mean_Wind _Speed Mean wind speed for a given location (numeric mph)
- (Universal Kriging)

[1,7,11]

18 Maximum_sustained _wind_speed Maximum sustained wind speed for a given location
(numeric MPH) - (Universal Kriging)

[7,11]

19 NAMELSAD County name (string) [13]

20 Population Number of residents living in the respective county
(numeric)

[13,24]

significant features determined by the ML algorithm. This procedure used the
Python hyperopt package [4]. To elaborate, the first step was to specify rele-
vant hyper-parameters for the ML models with predefined options and a range of
values. The ML models were then trained for 80 iterations using various combina-
tions of those hyper-parameters. Within each iteration, each model was trained
using Five-Fold CV, and the average performance of that model was used to
tune the hyper-parameters for the following model. Target values were predicted
using testing data and then on the entire data set using the best-performing
ML model via 20 times Five-Fold CV. This process produced mean Accuracy,
Precision, Recall, and F1-Score classification metrics.
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Fig. 2. The process of building a wildfire prediction model involves various steps from
data preparation to deploying ML models through a web-based tool

5 Results

Here we compare the results of the ML models on the California wildfire data
set as described in Sect. 5.1 with Two-class classification problems, which are
described in the earlier research cited in Sect. 5.2. Additionally, Sect. 5.3 illus-
trates the most important features and their impact on One-class ML models
for the two subtypes of OCSVM.

5.1 One-Class Machine Learning Model Results

Table 2 summarises the performance of the One-class ML models for the Califor-
nian data set. The number of inliers (fire positive) predictions, which correspond
to the number of actual wildfire events, and the number of outliers (fire negative)
predictions are used to assess the effectiveness of the applied ML approaches.
The results from Table 2 highlight that the OCSVM (PyOD) model was the best
performing One-class classifier, achieving a mean test Accuracy of 0.99, mean
Precision of 1.00, mean Recall of 0.99, and mean F1-Score of 0.99. A more
objective assessment of the OCSVM (PyOD) model through 20 × Five-Fold CV
resulted in its performance being higher than the other ML models observed.

With mean test Accuracy of 0.99, Precision of 1.00, Recall of 0.99, and F1-
Score of 1.00, the IF model produced results comparable with the other ML
models validating its outstandng performance. Mean test Accuracy, Precision,



246 F. N. Ismail et al.

Table 2. California ML Model Results Summary

ML Technique Data set Type Data set Count Inliers Outliers Mean Accuracy Mean Precision Mean Recall Mean F1-Score 20 × Five-Fold CV

OCSVM Train (80%) 5,868 5,806 62 0.989 1.000 0.989 0.994 0.990
(sklearn) Test (20%) 1,467 1,443 24 0.983 1.000 0.983 0.991 ±0.0030
OCSVM Train (80%) 5,868 5,809 59 0.989 1.000 0.990 0.990 0.990
(PyOD) Test (20%) 1,467 1,458 9 0.993 1.000 0.990 1.000 ±0.0028
AE Train (80%) 5,868 5,809 59 0.989 1.000 0.990 0.990 0.989
(PyOD) Test (20%) 1,467 1,454 13 0.991 1.000 0.990 1.000 ±0.0030
VAE Train (80%) 5,868 5,809 59 0.989 1.000 0.990 0.990 0.989
(PyOD) Test (20%) 1,467 1,454 13 0.991 1.000 0.990 1.000 ±0.0028
IF Train (80%) 5,868 5,809 59 0.989 1.000 0.990 0.990 0.989
(PyOD) Test (20%) 1,467 1,458 9 0.993 1.000 0.990 1.000 ±0.0030
DeepSVDD Train (80%) 5,868 5,281 587 0.899 1.000 0.900 0.950 0.897
(PyOD) Test (20%) 1,467 1,316 151 0.897 1.000 0.900 0.950 ±0.0101
ALAD Train (80%) 5,868 5,281 587 0.899 1.000 0.900 0.950 0.900
(PyOD) Test (20%) 1,467 1,272 195 0.867 1.000 0.870 0.930 ±0.0081

Recall, and F1-Score for the AE and VAE models ranged from 0.99 to 1.00.
Additionally, the mean test Accuracy, Precision, Recall, and F1-Score values for
the DeepSVDD and ALAD ML models were lower ranging from 0.87 to 1.00.

It should be noted that both OCSVM ML models, despite being less complex
than an ALAD and DeepSVDD model, perform better on all mean test metrics
providing adequate support for the outcomes of adopting simpler One-class ML
models.

5.2 Two-Class Machine Learning Outcomes for the Same
Ground-Truth Data

In assessing the One-class ML approach using the same ground truth data and
a randomly generated equal amount of false data [32], created by applying Two-
class ML models for the California region. Sayad [30] used a similar approach in
representing negative samples using random timestamps and locations. Hence,
the same approach was followed in creating a false data set. Furthermore, com-
monly used wildfire prediction models using Two-class ML models were inves-
tigated and chosen for this use case. As shown in Table 3, the Two-class ML
algorithms were used with supporting literature for predicting wildfires.

Table 3. Performance of Two-class ML models

ML Algorithm Supporting Literature Mean Accuracy Mean Precision Mean Recall Mean F1-Score

SVM [8,11,22] 0.628 0.657 0.763 0.706
RF [8,11,20] 0.679 0.664 0.724 0.693
Logistic Regression [3,9,22] 0.676 0.651 0.756 0.697
XGBoost Regression [19,20] 0.675 0.660 0.717 0.688
ANN [8,9,22] 0.682 0.665 0.732 0.697

The outcome shows that similar Two-class-based ML models achieved mean
test Accuracies from 0.63 to 0.68 for the test data set. Mean test Precision
recorded values from 0.65 to 0.66 and average mean Recall values ranged from



Comparing ML Models for Wildfire Prediction 247

0.73 to 0.76. Mean test F1-Score values recorded a range from 0.69 to 0.72. Hence,
these results suggest that the Two-class models exhibit reduced performance for
the selected data sets compared to One-class ML models using the same ground
truth data. Therefore, One-class ML models can serve as good alternatives in
prediction models such as wildfire risk, which has limited ground truth data over
the period in question.

5.3 Feature Importance Derived Using Shapley Values

This section examines the results obtained through the application of Shapley
values, which emphasize the most crucial features and their impact on One-class
ML models. These values are obtained by using game theory principles and
coefficients from the internal linear regression [18].

The Shapley value is a metric used to determine the average marginal contri-
bution of each feature when considering all possible combinations (coalitions) of
features [18]. To illustrate, to calculate the Shapley value of mean wind speed,
one needs to evaluate all possible combinations of mean wind speed observations.
For each combination, the marginal contribution of ignition probability will be
assessed. By aggregating all the marginal contributions to ignition probability,
the mean marginal contribution of ignition probability can be determined as the
Shapley value’s outcome.

Using Shapley values [18], the plot on the left in Fig. 3 shows the average
impact of the features on the One-class OCSVM PyOD ML models’ outputs. The
most influential attributes included the maximum and average dew point tem-
peratures associated with different seasons. Then Mean_Sea_Level_Pressure,
PPT_mm, and lfmc_mean are the second set of essential features that influence
wildfire prediction. For example, the temperature variables and lfmc_mean have
a more significant impact on the model output for the risk of wildfire than does
the population. Also, high LFMC is more susceptible to ignition and can signal
more fire spread [11]. Mean_Sea_Level_Pressure is the average level of one or
more bodies of water on Earth from which elevation can be calculated. With
increasing elevation, sea level pressure decreases. Wind speed and direction are
both factors in the wind effect. The dry wind is one of the primary causes of
wildfire spreading. The rate of wildfire spread has been estimated to be around
8% of wind speed, regardless of fuel type, especially in dry fuel moisture condi-
tions [12]. It can be noted that these same features are ranked highly across all
the models, and hence, these top-ranked features should be given more impor-
tance in the modelling process. Furthermore, the Shapley value impact has been
investigated in Fig. 3. The result of testing the features and models informed
a web-based tool, which is presented in the following section to showcase the
efficiency and practicality of One-class ML models.
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Fig. 3. Shapley values generated from the OCSVM PyOD model (right) shows that the
mean and temperature values are high when the model output is predicting a positive
fire occurrence

6 Deployment of Machine Learning Models

The web-based tool4 is presented as a contribution to the state-of-the-art ML-
based wildfire prediction domain (see Fig. 4). The main objective of this phase
of research is to deploy the results of the selected ML model using a REST
API, which will then be fed into a web-based tool. The web-based tool’s goal is
to provide long-term wildfire predictions based on One-class classification-based
ML models that can predict the start of a wildfire one week in advance for any
given location in California. This can also help international wildfire manage-
ment authorities test wildfire prediction models across multiple geographies. The
web-based tool is also useful for countries that do not have access to wildfire fore-
casting systems. However, this is not meant to replace current regional wildfire
forecasting systems.

The ML model is fed with 20 features (see Sect. 3) from four categories and
six probability rates of danger levels, which are mapped by the decision scores
(d) of the One-class ML models: No Danger (d ≤ 0), Low (0 < d ≤ 60), Moderate
(60 < d ≤ 80), High (80 < d ≤ 90), Very High (90 < d ≤ 97) and Severe (97 <
d ≤ 100). These fire danger rating breakpoints used were similar to fire spread
probabilities modelled by the US Wildland Fire Decision Support System [14]
to create these threshold classes. The selection of these fire danger rating class
thresholds was informed by historical fire danger outcomes, as documented in
[5]. The Flask REST service for the web-based tool uses three other external
REST APIs for generating wildfire prediction outcomes:

1. The publicly available free Open Topo Data elevation REST API which gives
elevation data of any location when latitude and longitude are given.

2. The OpenWeather REST API provides historical, current and forecasted
weather details through REST APIs for any point on the world.

4 https://www.bushfirepredict.com.

https://www.bushfirepredict.com
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3. USGS Earth Explorer Website hosts LFMC data as different vegetation
indexes carry a file format of all locations of California based on a MODIS
grid.

Web User
www.bushfirepredict.com

Fire Danger Ratings
Decision Score (d)

1. No Danger (d < 0)
2. Low (0 < = d < = 60)
3. Moderate (60 < d <=80)
4. High (80 < d < = 90)
5. Very High (90 < d <= 97)
6. Severe (97 < d <= 100)

Cloud DNS

Cloud Firewall

Cloud VPC

Cloud Storage

Appache 2.4.48
PHP 8.0.1

Jquery 3.5.1
Mapbox API 2.2.0

MySQL 8.0.21

Web
Application

Python 3.8.3
Flask 1.1.2

Sklearn 0.24.1
GeoPandas 0.10

Pandas 1.3.0
NumPy 1.20

Python Flask
REST API

CentOS Linux & Compute Engine

Open Topography Data
Elevation API

Google Cloud Platform (GCP)

Open Weather Map
API

LFMC Parameters from
NetCDF files

Fig. 4. The deployed ML model’s architecture deriving wildfire prediction outcomes
using six fire danger rating levels

The four main functionalities listed below were thus identified as the outcome
of this web-based tool:

1. Choose some historical wildfire events to train the ML models and validate
the model output. Users can also alter the input parameters and analyse and
explore the most important features of the ML models.

2. Select any location in California using the map, manually enter the input
features, and use a probability to predict wildfire susceptibility.

3. Search all input features for the next 7 d.
4. View historical yearly wildfire heat-maps based on ML model training and

testing data.

Several technological advancements in the field of wildfires have emerged in
recent years as a result of the high costs and practical difficulties of fighting wild-
fires. Technology training is at the top of the list because it is crucial for sharing
common resources and standards for information on fire danger and commu-
nication between fire authorities. The use of technological systems to forecast
and predict the occurrence of wildfires has enabled emergency response teams to
plan ahead and take preventative action. Firefighters must receive the necessary
training to deal with such emergencies. Implementing a straightforward, inex-
pensive prototype can significantly lower the price of intricate training. Large
financial budgets can also be set aside for public education campaigns about
wildfire prevention and natural wildfire occurrences. The infrastructure cost of
the Google Cloud Platform (GCP) (virtual machine and domain name) consti-
tutes the sole cost element for the implementation of this web-based tool. The
remaining programmes and services are either open source, free, or have a free
usage tier. Hosting this in an on-premise local area network may thus result in
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an infrastructure cost saving in terms of infrastructure. The web-based tool has
a monthly fee of $42 NZD and can forecast wildfires up to a week in advance5.
To assess the utility of this tool, a user-based questionnaire evaluation has been
carried out, the results of which are reported in the next section.

7 Web-Based Prototype Evaluation

The utility of the web-based tool was assessed by administering an 18-question
questionnaire to New Zealand computing practitioners covering general design,
performance, and content. The questionnaire was completed in an average of
15min by 11 participants. More than 81 percent of respondents used Chrome,
while Firefox was also used by some, according to the findings. Additionally,
over 63% of respondents reported feeling extremely satisfied, with the remaining
respondents rating their satisfaction as “somewhat”. Experience with the mobile
phone view using different browsers produced mixed results, with the major-
ity of respondents being satisfied, 18% being neither satisfied nor dissatisfied,
and the remaining 9% being extremely dissatisfied. The mobile phone version
needs to be enhanced further as a result. The overall design of the tool resulted
in an above-average ranking for all feedback. Performance-wise, the speed of
information retrieval from the input feature fields, the speed of ML prediction,
and the response time were all very quick. Additionally, the overall performance
was rated as being better than satisfactory, with 80% stating that it performed
excellently and with positive feedback exceeding 63% for the tool’s content when
measuring the understandability of input and output features of the accuracy of
wildfire prediction outcomes. This results in a high-performance rating for the
web-based tool.

Fig. 5. Inyo 2012-06-30 Fire Event with main input features

5 More information on the cost calculation can be found on [10, pp. 167–168].
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8 Conclusion and Future Work

In summary, historical wildfire events in California were represented using a
total of 20 features. Seven different One-class ML algorithms were used order
to train multiple models. After the hyper-parameters of the ML models were
tuned, the models were validated using repeated 20 × Five-Fold CV. The average
test Accuracy of each ML model ranged from 0.90 to 1.00, demonstrating the
ML models’ high generic performance for the California data set. In addition,
Precision, Recall, and F1-Score values were used to evaluate the effectiveness of
the ML models.

Not only does our study address the need to create ML-based wildfire predic-
tion models, but, more importantly, it identifies key features from these models
that could influence wildfire ignition. As well as our findings being consistent
with the outcomes of previous research we also showed the degree to which
these identified features contribute to the risk of a wildfire event.

Finally, we described development of a web-based prototype that integrates
the best performing ML algorithms and model of the sequence of wildfire events
for wildfire occurrence mapping. The intended audiences for this tool are the
general public and wildfire authorities.

However, as we only used one data set for this study, future work will involve
the creation of more wildfire data sets from other countries, potentially using
different features. Top-ranked features extracted from these ML models using
Shapley values may be compared and contrasted with the findings from our
existing work to show how the contribution of different features influence the
risk of wildfire depending on the location.
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