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Preface

This volume collates selected revised papers presented at the 2021 edition of
the Coordination, Organization, Institutions, Norms, and Ethics for Governance of
Multi-Agent Systems (COINE). The workshop was held on May 3, 2021, and was
co-located with the 20th International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS)—originally set in London, UK, but held virtually due to the
COVID-19 pandemic situation.

This is the second iteration of the workshop since its relabeling in 2020 as COINE
from its earlier form: COIN (Coordination, Organizations, Institutions and Norms in
Agent Systems). This modification makes explicit the consideration of ethical aspects as
a core part of the governance of social systems—the overarching theme of the COINE
workshop series. Despite its new name, COINE continues the tradition of its predecessor
by bringing together researchers in autonomous agents andmulti-agent systemsworking
on the scientific and technological aspects of social coordination, organizational theory,
normative MAS, artificial or electronic institutions, and norm-aware and ethical agents.

COINE 2021 received 12 submissions all which underwent two rounds of single-
blind peer review. Each submission received feedback by at least three reviewers;
this initial assessment was part of the admission to the presentation. Given the
recommendations made by the reviewers, nine papers were admitted: six submissions
were accepted for full presentations and three for short presentations. All articles were
subsequently refined and extended, based on feedback received as part of the reviews
and the presentations, and underwent a second round of reviews before inclusion in this
post-proceedings volume as full papers.

In addition to the peer-reviewed submissions, two invited speakers presented their
work. The first speaker, Marija Slavkovik, introduced the field of machine ethics and
its relationship with normative reasoning. Slavkovik presented open challenges and
discussed how the COINE community can engage with the field. The second speaker,
Julian Padget, argued how conscientious design can be used as a principled approach for
the ethical design and deployment of value-driven agents. Padget discussed how such
agents can reflect the way social institutions are connected through the governance of
physical interaction and facilitate human-to-human interaction.

This proceedings volume organizes the workshop papers into three topics: 1) Invited
Talks; 2) Conceptual Frameworks Architectures for Collaboration and Coordination;
and 3) Modeling and Understanding Social Behavior Using COINE Technologies. The
first topic contains an abstract from one of the two invited speakers. Next, we focus on
articles presenting fundamental research on embedding and optimising social behavior
in normative agents. The final topic contains papers where COINE technologies have
been used to provide a better understanding human social intelligence.
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Invited Talks

– Machine ethics - is it just normative multi-agent systems? by Marija Slavkokik. In
this extended abstract, Slavkokik provides an overview of the field of machine ethics
by discussing its relationship to normative reasoning.

Conceptual Frameworks Architectures for Collaboration
and Coordination

This topic of the proceedings is dedicated to approaches that propose conceptual frame-
works and other architectures for developing socially-aware agents. This theme contains
work related to the emergence and optimization of COINE concepts, e.g. norms, which
facilitate coordination and collaboration.

– A Framework for Automatic Monitoring of Norms that Regulate Time Constrained
Actions by Nicoletta Fornara, Soheil Roshankish, and Marco Colombetti. This paper
provides a framework for modeling norms, using operational semantics, to enable
reasoning with these norms to automatically compute norms violation and fulfilment.

– Collaborative Human-Agent Planning for Resilience by Ronal Singh, TimMiller, and
Darryn Reid. This work investigates how human insights can be provided at run-time
without changing the artificial agent’s domainmodel in order to improve collaboration
in human-machine teaming scenarios.

– Environmental consequences of the status-functions in artificial institutions by
Rafhael Cunha, Jomi Hubner, and Maiquel de Brito. This work proposes the expres-
sion of the consequences in the environment of status functions in artificial institution
to aid agents’ reasoning over their social goals.

– Noe: Norms Emergence and Robustness Based on Emotions in Multiagent Systems
by Sz-Ting Tzeng, Nirav Ajmeri, and Munindar P. Singh. The authors explore how
considering emotional responses to the outcomes of norm satisfaction and violation
affects the emergence and robustness of social norms. Their result demonstrate an
improvement in norms compliance and promotion of societal welfare.

– Run-time Norms Synthesis in Multi-Objective by Multi-Agent Systems by Maha
Riad and Fatemeh Golpayegani. This papers proposes a run-time utility-based norm
synthesis approach as a mechanism for agents to understand the impact of a sug-
gested norm on their objectives and decide whether or not to adopt it. The addition
of this reasoning mechanism allows agents to optimize against multiple objectives:
coordinating their behavior while achieving any norms-conflicting objectives.

Modeling and Understanding Social Behavior Using COINE
Technologies

The papers in this thematic section draw upon real-world datasets or otherwise ground
their assumptions in the literature to investigate social phenomena and provide new
insights and solutions to social problems.
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– A Bayesian model of information cascades by Sriashalya Srivathsan and Stephen
Cranefield. This paper presents a Bayesian model of information cascades. The
authors demonstrate how cascades will not necessarily occur and that adding prior
agents’ information will delay any effects of cascades.

– Interactions between social norms and incentive mechanisms in organizations
by Ravshanbek Khodzhimatov, Stephan Leitner, and Friederike Wall. This paper
focuses on how individual socially-aware behavior interferes with performance-based
incentive mechanisms in multi-agent organizations. The authors discuss how promot-
ing socially-accepted behavior might reduce an organization’s performance, but that
reduction can be mitigating by using individual-based incentives.

– Learning for Detecting NormViolation in Online Communities by Thiago Freitas dos
Santos, Nardine Osman, and Marco Schorlemmer. This paper demonstrates how the
detection and generation of explanations for norms violations can be used to mitigate
the ill-effects that arise when different members of an online community interpret
norms in different ways. A real-world use case, based on the Wikipedia edits data, is
presented.

– Solving social dilemmas by reasoning about expectations by Abira Sengupta, Stephen
Cranefield, and Jeremy Pitt. This article investigates how explicit reasoning about
expectations, i.e. future-directed beliefs that agents have, can be used to encode both
traditional game theory solution concepts and social mechanisms in social dilemma
situations. The authors model a collective risk dilemma, based on the plain-plateau
scenario, and show how using expectations in the reasoning mechanisms enables
cooperation to take place.

We would like to thank everyone who helped to make COINE 2021 a success and
we hope that you enjoy these proceedings.

Marina De Vos
Juan Carlos Nieves
Andreas Theodorou
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Machine Ethics - Is It Just Normative
Multi-agent Systems?

Marija Slavkovik(B)

University of Bergen, Bergen, Norway
marija.slavkovik@uib.no

http://www.springer.com/gp/computer-science/lncs

Abstract. Researchers from normative multi-agent systems increas-
ingly find familiar questions being asked but now in a field called machine
ethics. I the invited talk I introduced machine ethics and focused on some
overlapping topics of interest for the both field. This extended abstract
offers a highlight on where these two fields overlap, where they differ,
but foremost why pursuing advancements in both has a direct impact on
society today.

1 Introduction

To live in the beginning of the twenty first century is to live with devices than
increasingly have more computational power than the computer1 used in the
first moon landing. These devices also have numerous sensors and are Internet
capable.. As our devices gain an increasing specter of unsupervised action ability,
inevitably they become our moral arbiters.

Autonomous operation includes the ability of decision making. Successfully
operating within society necessitates that the decisions taken are not only opti-
mal with respect to the preferences, goals, and constraints of the individual
making them, but also with respect to the interests of others in that society.
When we enable devices to make decisions for us, we need to enable them to
also consider the interests of others other than our own, i.e., to make moral
decisions and thus be our moral arbiters. Machine ethics, or artificial morality,
is a sub-field in AI that “is concerned with the behaviour of machines towards
human users and other machines” [1].

A device that has the ability to accomplish goals, by having the ability to
make decisions adjusted to an environment that it shares with people and other
devices, is an artificial agent [13, Chapter2]. The field of multi-agent systems
has studied various aspects of how artificial agents should operate in shared
environment with other agents for a couple of decades now [17]. Within multi-
agent systems research, the problem of how to specify norms for artificial agents,

1 https://en.wikipedia.org/wiki/Apollo Guidance Computer.

Supported by organization x.

c© Springer Nature Switzerland AG 2022
A. Theodorou et al. (Eds.): COINE 2021, LNAI 13239, pp. 3–6, 2022.
https://doi.org/10.1007/978-3-031-16617-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16617-4_1&domain=pdf
http://orcid.org/0000-0003-2548-8623
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer
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how can artificial agents reason with them and learn them is well recognised [3]
and pre-dates machine ethics. Is then the case that we machine ethics just gives
a new name for normative multi-agent systems research?

2 Who’s a Good Device?

A good behaviour of machines towards people may not be satisfied even when
they were to make the same decisions that a human that has a good behaviour
would make in the same situation [10,11]. The problem of what is good, what is
bad ,and how to discern them, is the subject of moral philosophy [7]. Machine
ethics imposes new rigour and opens new study directions for moral philoso-
phy such as: should machines be enabled with ethical reasoning [2,6] and can
machines be moral agents at all [4].

Moral philosophy is considered to include three main areas of study: meta-
ethics, normative ethics and applied ethics [7]. Normative ethics is concerned
with developing moral theories, that is means to identify what are the right
and wrong decisions, actions, states of the world etc. When we consider the
specific problem of how to enable artificial agents to make moral decisions, we
are primarily interested in normative moral philosophy and the moral theories
developed within it.

Artificial moral agents can be accomplished both implicitly and explicitly
[12,16]. To build implicit moral agents we use given moral theories an enable
the agents to follow them. To build explicit moral agents we enable the agents
to identify right from wrong without specifying a specific theory, but rather by
enabling them to adopt the norms of the environment/society they occupy. The
norms of society may or may not be constructed around a specific moral theory
[15].

Not all norms in society are moral norms [8]. Why should then all normative
agents be moral agents? Is an artificial agent that can reason with societal norms
also an artificial moral agent? Is an artificial agent, since it necessarily follows
programming rules to accomplish moral behaviour, necessarily a deontic moral
agent? The answer of these question requires long-standing debates in moral
philosophy to be settled.

3 Normative Conflicts and Moral Dilemmas

The idea that a device needs to be able to make moral decisions got fueled by
the revolution of autonomous vehicles (AV) - AV’s are both exciting and scary;
traffic is a context in which successful operation heavily depends on concern
for others. To illustrate the moral dilemma an AV may face, and also engage
the audience, we overuse the trolley problems23. While we toy with imaginary
driving scenarios, automated moral decision making is deployed somewhere else.
2 https://www.brookings.edu/research/the-folly-of-trolleys-ethical-challenges-and-

autonomous-vehicles/.
3 https://www.moralmachine.net/.

https://www.brookings.edu/research/the-folly-of-trolleys-ethical-challenges-and-autonomous-vehicles/
https://www.brookings.edu/research/the-folly-of-trolleys-ethical-challenges-and-autonomous-vehicles/
https://www.moralmachine.net/
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Traffic is a context that is heavily legally regulated and in that sense stands
completely opposite to the context of social media content curation. Misleading
information, disinformation and outright fast-spreading lies have an unethical
impact on our societies4. Choosing to censor or suppress the visibility of online
content that may be misleading or misinforming, is a moral decision that we
are very much interested to have software take over5 How can we navigate these
computational challenges of automating moral decisions regarding content when
one man’s lie is another man’s gospel? Consider that we are not in consensus
on whether content moderation is in itself a morally right thing to do6. The
automation of moral decisions requires addressing the very practical problem of
not what is the solution to long standing moral dilemmas, but on how to deal
with moral conflicts.

Normative multi-agent systems as field has studied problems of norm compli-
ance and resolving normative conflicts [14]. In contrast, the question of whether
or not moral conflicts do really even exist has been long argued in moral philoso-
phy [5]. A possible circumvention of solving hard moral philosophy problems has
been argued through the observation that people do not tend to follow moral
theories, but rules of thumb when choosing what to do in a morally sensitive
situation [9]. If that is the case, then the machine ethics would very much require
the expertise of normative multi-agent systems to operationalise artificial moral
agents.

4 Conclusions

Is then the case that we machine ethics just gives a new name for normative
multi-agent systems research? The answer has to be no. The scopes of machine
ethics and normative multi-agent systems overlap, but neither subsumes the
other. Machine ethics does bring the field of normative multi-agent systems
closer to moral philosophy. The normative multi-agent systems field can offer
valuable insights, tools and approaches to automating moral decision-making.
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marco.colombetti@polimi.it

Abstract. This paper addresses the problem of proposing a model of
norms and a framework for automatically computing their violation or
fulfilment. The proposed model can be used to express abstract norms
able to regulate classes of actions that should or should not be performed
in a temporal interval. We show how the model can be used to formal-
ize obligations and prohibitions and for inhibiting them by introducing
permissions and exemptions. The basic building blocks for norm specifi-
cation consists of rules with suitably nested components. The activation
condition and the regulated actions together with their time constrains
are specified using the W3C Web Ontology Language (OWL 2). Thanks
to this choice, it is possible to use OWL reasoning for computing the
effects that the logical implication between actions has on the fulfilment
or violation of the norms. The operational semantics of the model is
specified by providing an unambiguous procedure for translating every
norm and every exception into production rules.

1 Introduction

In this paper, we present the T-NORM model (where T stands for Temporal), a
model for the formalization of relational norms that regulate classes of actions
that agents perform in the society and that put them in relation to other agents,
like for example paying, lending, entering a limited traffic area, and so on. Our
proposal is strictly related to the specification of the operational semantics of
such a model to make it possible to provide monitoring and simulation services
on norms specifications. Specifically, the proposed model can be used to automat-
ically compute the fulfilment or violation of active obligations and prohibitions
formalized to regulate a set of actions that should or should not be performed in
a temporal interval. The fact that the actions regulated by the norms are time
constrained is an important distinguishing feature of the proposed model. We

Funded by the SNSF (Swiss National Science Foundation) grant no. 200021 175759/1.
Proc. of the COINE 2021 co-located with AAMAS 2021, 3rd May 2021, London, UK.
All Rights Reserved.

c© Springer Nature Switzerland AG 2022
A. Theodorou et al. (Eds.): COINE 2021, LNAI 13239, pp. 9–27, 2022.
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would like to stress that the type of norms that can be represented with the
proposed model are assumed to be static, in the sense that they do not change
dynamically over time. What is represented in the model is that a norm may
be activated over time and subsequently its activation may generate fulfilments
and/or violations. Another important aspect of the model is that once a set of
obligations and prohibitions are formalized they may be further refined by the
definition of permissions and exemptions.

In NorMAS literature [16] it is possible to find numerous formal models
for the specification of norms, contracts, commitments and policies. Many of
them can be used for regulating the performance of actions or for requiring the
maintenance of certain conditions, but very often those actions and conditions
may only be expressed using propositional formulae. This choice makes it difficult
to express the relation between the regulated actions (or conditions) and time.
This is an important limit in the expressiveness of those models, because there
are numerous real examples of norms and policies whose relation with time
intervals is important for their semantics; for example in e-commerce, deadlines
(before which a payment must be done) are fundamental for computing the
fulfilment or violation of contracts.

When temporal aspects are important for the specification of norms and
for reasoning on the evolution of their normative state, one may decide to use
temporal logics (e.g. Linear Temporal Logic LTL) to express and reason about
time-related constraints. Unfortunately, this solution has important limitations
when it is necessary to use automatic reasoning to compute the time evolution
of the normative state, as discussed in [12].

In our approach we propose to formalize some components of the norms,
i.e. their activation condition and the regulated actions together with their time
constrains using semantic web languages, specifically the W3C Web Ontology
Language (OWL 2, henceforward simply OWL)1. This is for two reasons. First,
it should be easier for those who want to formalize norms with our model to
use a standard language that is fairly well known and taught in computer sci-
ence graduate courses. Second, this language has a formal semantics on which
automatic reasoning can be performed. Moreover, OWL is more expressive than
propositional formulae2, which are used in many other norm models. The idea
of formalizing policies using semantic web languages is spreading also thanks
to the success of the ODRL (Open Digital Rights Language) policy expression
language3, which has been a W3C Recommendation since February 2018.

Our idea is to propose a model of norms that norm designers can use for
formalizing the intuitive meaning of having an obligation or a prohibition. That
is, when something happens and certain conditions hold, an agent is obligated
or prohibited to do something in a given interval of time. What is innovative

1 https://www.w3.org/TR/owl2-overview/.
2 Description Logics (DLs), which are a family of class (concept) based knowledge

representation formalisms, are more expressive than propositional logic, and they
are the basis for ontology languages such as OWL [10].

3 https://www.w3.org/TR/odrl-model/.

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/odrl-model/
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with respect to other approaches is that instead of explicitly labelling a norm as
an obligation or a prohibition, we let the norm designer explicitly express what
sequence of events will bring to a violation or a fulfilment; this way, there is
practically no limit to the types of normative relations that can be expressed.
To do so the norm designer needs to be able to describe triggering events or
actions and their consequences. The resulting model will let the norm designer
to specify norms as rules nested into each other.

The main contributions of this paper are: (i) the definition of a model of
norms that can be used to specify numerous types of deontic relations, i.e. dif-
ferent types of obligations and prohibitions, and their exceptions; (ii) the defi-
nition of its operational semantics (by combining OWL reasoning and forward
chaining) that can be used to automatically monitor or simulate the fulfillment
or violation of a set of norms; (iii) the proposal of a set of different types of
concrete norms, that can be used to evaluate the expressive power of a norms
model.

This paper is organized as follows: in Sect. 2 the main goals that guided
the design of the norms model are presented. In Sect. 3 the T-NORM model
is introduced and in Sect. 4 its operational semantics is provided. In Sect. 5 the
architecture of the framework for computing the fulfillment or violation of norms
and its implementation are presented. Finally, in Sect. 6 the proposed model is
compared with other existing approaches.

2 Design Goals

In this section we list the main goals that guided us in the design of the proposed
model and in the definition of its operational semantics.

Our first goal is to propose a model of norms able to regulate classes of
actions; for example, we want to be able to formalize a norm that regulates all
the accesses to a restricted traffic zone of a metropolis and not only the access
of a specific agent. This objective is not achieved by those models, like ODRL
and all its extensions or profiles [3,6] where the policies designer has to specify
the specific debtor of every policy instance.

Our second goal is to define a model of norms able to regulate classes of
actions whose performance is temporally constrained. For instance, the following
norm regulates all the access to an area and the subsequent action of paying
is temporally constrained by a deadline, which in turn depends on the access
instant of time: “when an agent enters in the limited-traffic area of Milan,
between 7 a.m. and 7 p.m., they have to pay 6 euros within 24 h”. The first and
the second goal will bring us to define a model for expressing norms that may
be applied multiple times to different agents and may be activated by numerous
events happening in different instants of time.

Starting from the experience that we gained by using the model of obliga-
tions, prohibitions and permissions presented in our previous paper [6], we have
developed a third goal for our model. The goal is to propose a model made of
basic constructs that can be combined by a norm designer to express different
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types of deontic relations without the need to introduce a pre-defined list of
deontic types, like obligation, prohibition, and permission. This has the advan-
tage that whenever a new kind of norms is required, like for example the notion
of exemption or the notion of right, there is no need to introduce a new type
into the model with its operational semantics. With the model proposed in this
paper, it is possible to use few basic constructs and combine them in different
ways to express the obligation to perform an action before a given deadline or
the prohibition to perform an action within an interval of time. Our idea is to
allow norm designers to explicitly state what behaviour will bring to a violation
and what behaviour will bring to a fulfilment, regardless of whether they are
formalizing an obligation or a prohibition. Moreover, in this new model, per-
missions are not treated any more as first-class objects, but they are formalized
as exceptions to prohibitions, while exemptions are formalized as exceptions to
obligations.

Our fourth goal is to provide an operational semantics of our model of norms
that will make it possible to monitor or simulate the evolution of their state.
Our goal is mainly to be able to automatically compute if a policy is active (or
in-force) and then if it becomes fulfilled or violated on the basis of the events
and actions performed by agents. Monitoring is crucial from the point of view of
policy’s debtor for checking if their behaviour is compliant and it is relevant for
policy’s creditors to react to violations. Simulation may be used for evaluating in
advance the effects of the performance of certain actions. Another useful service
that can be provided on a set of policies is checking their consistency, checking
for example if a given action is contemporarily obligatory and prohibited. This
can be done at design time by using model-checking techniques, but it is not
among the objectives of our model. However, by proposing a model that allows
us to track how the state of the norms evolves over time, it will be possible to
detect inconsistencies that occur at a precise instant of time during the execution
of their monitoring process.

3 The T-NORM Model of Norms

The idea that has guided us in the definition of the T-NORM model is to give
norm designers a tool to describe what sequence of events or actions would bring
an agent to the violation or fulfilment of a norm. This approach has the advan-
tage of providing norm designers with a model that in principle can be used
to define any type of deontic relationship, like obligations, prohibitions, permis-
sions, exemptions, rights and so on. This is a crucial difference with respect to
the models having a pre-defined set of deontic types, like it is the case for ODRL,
OWL-POLAR [13], and also our previous proposal of a model for monitoring
obligations, prohibitions, and permissions [6].

The intuitive meaning of having an obligation (resp. a prohibition) that we
want to capture is the following one: when an activation event happens and some
contextual conditions are satisfied, it is necessary to compute some parameters
(for example the deadline) and to start to monitor the performance of a specific
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regulated action or class of actions. In turn, if an action, which matches the
description of the regulated one, is performed before another event (for example
a time event that represents a deadline), then the obligation is fulfilled (resp. the
prohibition is violated); otherwise, if the regulated action cannot be performed
anymore (for example because the deadline has elapsed) the obligation is violated
(resp. the prohibition is fulfilled).

To capture this intuitive meaning we decided to represent norms as rules
that determine the conditions under which a fulfilment or violation is generated.
Below, we discuss how different types of norms can be represented in this way.
Then in the next section we describe how T-Norm norms can be translated into
production rules, thus assigning an unambiguous operational semantics to our
norm formalism.

The idea of representing norms in the form of rules is not new in NorMAS
literature [7]. However, in order to explicitly specify the sequence of events that
bring to a violation or a fulfilment, we propose a model of norms where the
basic building blocks for norm specification consists of rules with properly nested
components. Thanks to this choice, as we will discuss in Sect. 4, the operational
semantics of our model of norms can be easily expressed using productions. Our
idea is to express the meaning of having an obligation or a prohibition by nested
rules of the following form:

NORM Norm_n

[ON ?event1 WHERE conditions on ?event1

THEN

COMPUTE]

CREATE DeonticRelation(?dr);

ASSERT isGenerated(?dr,Norm_n); [activated(?dr,?event1);]

ON ?event2 [BEFORE ?event3 WHERE conditions on ?event3]

WHERE actor(?event2,?agent) AND conditions on ?event2

THEN ASSERT fulfills(?agent,?dr); fullfilled(?dr,?event2)|

violates(?agent,?dr); violated(?dr,?event2)

[ELSE ASSERT violates(?agent,?dr); violated(?dr,?event3)|

fulfills(?agent,?dr); fulfilled(?dr,?event3]

In the proposed model the first (optional) ON...THEN component is used for
expressing conditional norms, i.e. norms that start to be in force when a certain
event happens and where the temporal relation between the activating event
and the regulated action is crucial in the semantics of the norm. For example
in Norm01 (“when an agent enters in the limited-traffic area of Milan between 7
a.m. and 7 p.m., they have to pay 6 euros within 24 h”) the event of entering in
the limited-traffic area must occur for the obligation to pay to activate; moreover
the entering instant is fundamental for computing the deadline of the payment.
The second ON...THEN component is used for expressing the actions regulated
by the norm and the consequences of their performance or non-performance.

In the T-NORM model, a norm activation can generate many different deon-
tic relations. In other approaches, like for example in [1], a norm generates norm
instances. We prefer to use the term deontic relation because it can also be used
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to denote obligations and prohibitions that are not created by activating a norm,
but for example by making a promise or accepting an agreement.

In the ON ?event WHERE and in the BEFORE ?event WHERE components, the
norm designer has to describe the conditions that a real event has to satisfy to
match a norm. In our model all the relevant events and actions are represented
in the State Knowledge Base. The data for managing the evolution of the state
of norms, for example the deontic relation objects, are stored in the Deontic
Knowledge Base. Obviously, the formalism chosen for representing the data in
the State KB and the Deontic KB determines the syntax for expressing: the
conditions, which are evaluated on the State KB, and the actions (after THEN),
which are performed on the Deontic KB. Differently from other approaches,
where the context or state of the interaction is represented by using propositional
formulae [1,9], we decided to formalize the State KB and the Deontic KB by
using semantic web technologies, in particular the W3C Web Ontology Language
(OWL). This choice has the following advantages:

– events and actions are represented with a more expressive language, indeed
OWL is a practical realization of a Description Logic known as SROIQ(D),
which is more expressive than propositional logic;

– in the definition of the conceptual model of the State KB it is possible to
reuse existing OWL ontologies making the various systems involved in norm
monitoring interoperable;

– it is possible to perform automatic reasoning (OWL can be regarded as a
decidable fragment of First-Order Logic) on the State KB and deducing
knowledge from the asserted one. In particular, this is important when the
execution of an action logically implies another one. For example, the repro-
duction of an audio file implies its use, therefore if the use is forbidden so
is its reproduction. This is a crucial advantage because instead of creating
special properties that allow you to express which actions imply other ones
(like for example it has been done in ODRL with the implies property4) it
is sufficient to reason on the actions performed by using OWL reasoners.

In the specification of conditions, OWL classes are represented using unary
predicates starting with a capital letter and OWL properties are represented
using binary predicates starting with a lowercase letter. If an event is described
with more conditions, they are evaluated conjunctively, variables (starting with
?) are bound to a value, and a negated condition is satisfied if there is no element
in the KB that matches it. In the example reported in this paper, the conceptual
model of the events represented in the State KB is formalized with the Event
Ontology in OWL [4,6], which imports the Time Ontology in OWL5 used for
connecting events to instants or intervals of time, and the Action Ontology for
representing domain-specific actions, like the PayAction class. The conceptual
model of the Deontic KB is formalized with the T-Norm Ontology in OWL6.

4 https://www.w3.org/TR/odrl-model/#action.
5 https://www.w3.org/TR/owl-time/.
6 https://raw.githubusercontent.com/fornaran/T-Norm-Model/main/tnorm.owl.

https://www.w3.org/TR/odrl-model/#action
https://www.w3.org/TR/owl-time/
https://raw.githubusercontent.com/fornaran/T-Norm-Model/main/tnorm.owl
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In the second component of norms, the BEFORE condition and the ELSE branch
are optional. The BEFORE part is mainly used for expressing deadlines for obliga-
tions. Although an obligation without a deadline cannot be violated and there-
fore it is not an incentive to perform the obligatory action, the BEFORE part is
not compulsory. The ELSE branch is followed when the regulated action cannot
happen anymore in the future, for example if it has to happen before a given
deadline (in this case event3 is a time event) and the deadline expires without
event2 being performed. In principle other conditions, beside BEFORE, can be
used to express other temporal operators but they are not introduced in this
version of our model. In the consequent (THEN) parts of a norm, it is possible to
specify that:

– (COMPUTE) the value of some variables (for example the deadline that depends
on the activation time) are computed using arithmetic operations and the
value of variables obtained when matching the antecedent;

– (CREATE) new individuals belonging to a certain class and having certain
properties have to be created in the Deontic KB for making the monitoring
of norms feasible. Each conditional norm, when activated, can generate several
deontic relations;

– (ASSERT) the value of certain properties of existing individuals created by the
norm may be set.

The debtor of a deontic relation is the agent that is responsible for its viola-
tion or fulfilment; usually it is the actor of the regulated action. In legal systems
there are exceptions to this general rule (for example for actions performed by
minors or people with mental impairment or in cases of strict liability), but we
leave this aspect for future works. Specifying the debtor is important because it
is the agent to whom sanctions will apply (this aspect is not addressed in the
current paper).

The creditor of a deontic relation is the agent to whom the debtor owns the
performance or non-performance of the regulated action. In certain cases it may
be difficult to establish the creditor of a deontic relation (for example who is the
creditor of the prohibition of running a red light?); we leave for future works the
analysis of this aspect.

3.1 Expressive Power of the Model

By using the T-NORM model we are able to express different types of norms.
First of all it is possible to formalize conditional and direct (or un-conditional)
obligations and conditional and direct prohibitions. Moreover, every conditional
norm (whether it is an obligation or a prohibition) when activated will bring
to the creation of specific deontic relations or to the creation of general deontic
relations. Every specific deontic relation regulates the performance of an action
by a specific agent, differently every general deontic relation regulates the per-
formance of a class of actions that can be concretely realized by different agents,
and therefore can generate many violations or fulfilments.
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There exist models, which are not focused on regulating time-constrained
actions, where (coherently with deontic logics) prohibitions are merely formalized
as obligations to not perform the regulated action. However, when the regulated
actions are time constrained it is crucial to react to their performance but also
to their non-performance in due time. Think for example to the prohibition
expressed by Norm02: “Italian libraries cannot lend DVDs until 2 years are passed
from the distribution of the DVD”. This prohibition cannot be expressed as an
obligation to not lend certain DVDs in a specific time interval, because while
an obligation is fulfilled by the performance of a single instance of an action, a
prohibition is not fulfilled by a single instance of refraining from the performance
of an action. In the T-NORM model the main difference between obligations
and prohibitions is that the performance of the regulated action brings about a
fulfilment in the case of obligations and a violation in the case of prohibitions.

To illustrate the flexibility of our model, we shall now present examples of
different types of norms. Due to space limitation we will not formalize them all.
Norm01 is an example of conditional obligation and each one of its activations
creates one specific deontic relation to pay 6 euros for the owner of every vehicle
that entered in the limited-traffic area. Norm01 may be formalized with the T-
NORM model in following way:

NORM Norm01

ON ?e1

WHERE RestrictedTrafficAreaAccess(?e1) AND vehicle(?e1,?v) AND

owner(?v,?agent) AND atTime(?e1,?inst1) AND

inXSDDateTimeStamp(?inst1,?t1) AND ?t1.hour>7 a.m. AND ?t1.hour<7p.m

THEN

COMPUTE ?t_end.hour=?t1.hour+24

CREATE DeonticRelation(?dr01_n);TimeEvent(?tev_end_n);

Instant(?inst_end_n);

ASSERT isGenerated(?dr01_n,Norm01);activated(?dr01_n,?e1);

debtor(?dr01_n,?agent);end(?dr01_n,?tev_end_n);

atTime(?tev_end_n,?inst_end_n);

inXSDDateTimeStamp(?inst_end_n,?t_end);

ON ?e2 BEFORE ?tev_end_n

WHERE PayAction(?e2) AND reason(?e2,?e1) AND recipient(?e2,Milan)

AND price(?e2,6) AND priceCurrency(?e2,euro) AND actor(?e2,?agent).

THEN ASSERT fulfills(?agent,?dr01_n); fulfilled(?dr01_n,?e2)

ELSE ASSERT violates(?agent,?dr01_n); violated(?dr01_n,?tev_end_n)

where a counter n is incremented each time the norm is activated, so that
each activation creates a different deontic relation.

Norm02 (“Italian libraries cannot lend DVDs until 2 years are passed from the
distribution of the DVD”) is an example of conditional prohibition, its activation
creates a general deontic relation every time a new DVD is distributed. The
general deontic relation created for each specific DVD regulates the actions of
all the agents registered in Italian libraries.

The third type of norms is a conditional prohibition that generates specific
deontic relations, an example of this type of norm is Norm03: “a person who has
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a positive swab to Covid-19 cannot leave the house for the next 15 days”. The
fourth type of norm is a conditional obligation that generates general deontic
relations, like for example in Norm04: “when the school bell rings, students have
5min to enter their classroom”.

An example of unconditional prohibition is given by Norm05: “when the red
light is on it is prohibited to pass the traffic light”. This prohibition is uncondi-
tional because there is no need to react to its activation by performing specific
actions. For enforcing this prohibition it is enough to check the state of the red
light every time an agent pass the traffic light and if the red light is on there is
directly a violation. Finally, the following Norm06: “the lecturer of a course has
to organize 2 exams per year” is an example of unconditional obligation.

Finally, we present an example of conditional obligation where the obliged
action should be performed before another event that is not a time event (there
is not a deadline). Norm07 is: “When an agent enters into a supermarket parking
between 7 a.m. and 7 p.m., they have to pay 2 euros for every hour of the parking
unless they did some shopping at the supermarket”.

It is important to mention an important constraint for the use of the model:
the regulated action must have an actor, this actor is the debtor of the deontic
relation and is the agent who will fulfill or violate the deontic relation.

3.2 The Model of Exceptions

The meaning of having the permission to perform an action has been widely
studied in the literature and different types of permission have been analyzed. In
[8] the important distinction between strong and weak permission has been dis-
cussed. Having the weak permission to do an action is equivalent to the absence
of the prohibition to do such an action. Differently, we have the strong permission
to do an action when there is the explicit permission to do such an action; usu-
ally strong permissions are used to explicitly derogate to existing prohibitions.
A similar notion is that of exemption, which is used to derogate obligations. In
the T-Norm model we introduce one construct, the exception, that can be used
for modelling both permission and exemption and can be iterated at any level
of depth.

By using the T-Norm model we can specify different types of exceptions. The
first type is represented by exceptions to norms activation. When some specific
conditions on the event that activates the norm are met, the consequent deontic
relation has not to be generated. An example of this type of exception to Norm01
is: “ambulances do not have to pay for entering into the limited traffic area”. In
this case a check on the type of the vehicle inhibits the creation of the obligation
to pay, thus creating an exemption.

The exceptions of the second type are those to deontic relations, i.e. when
some specific conditions on the regulated event are satisfied the generation of
violation/fulfilment is inhibited. An example of this type of exception to Norm02
is: “school teachers can always borrow every DVD from the library”. In this case,
a check on the position of the borrower can be used to prevent the violation of
the prohibition, that is, for creating a permission. This type of exception cannot
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be expressed by inhibiting the activation of the norm (using the first type of
exception) because the condition (being a school teacher) is on the borrower,
who is not part of the activating event of the prohibition.

Both these types of exceptions could be expressed by adding some specific
conditions to the antecedent of a norm. However, this solution requires to mod-
ify an already enforced norm by adding further conditions. This is not a good
solution because it implies changing a previously defined norm every time an
exception is introduced. A better solution consists in expressing exceptions with
a construct that is external to norms. Our idea is to introduce a construct that
is able to inhibit the activation or the fulfilment/violation of a norm when the
activating or the regulated event happens and some further conditions are met.
Therefore, we formalize exceptions with a construct whose effects is to inhibit
the activation of one of the components of a norm. Given that an exception
is strictly related to a norm, we assume that it has access to all the variables
introduced in the related norm, to which it simply adds some more conditions.
An exception is expressed in one of the following ways on the basis of its type:

EXCEPTION TO Norm_n TYPE 1

ON ?event1

WHERE conditions on event1

THEN exceptionToNorm(Norm_n,?event1)

EXCEPTION TO Norm_n TYPE 2

ON ?event2

WHERE conditions on event2 AND isGenerated(?dr,Norm_n)

THEN exceptionToDR(?dr,?event2)

For example the formalization of an exception of the fist type to Norm01 for
ambulances is:

EXCEPTION TO Norm01

ON ?e1 WHERE Ambulance(?v)

THEN exceptionToNorm(Norm01,?e1)

These types of exceptions cannot be formalized by simply deleting a norm or
a general deontic relation, because they suspend the effects of norms only in par-
ticular situations. For example, Norm01 applies to all vehicles except ambulances
and Norm02 applies to all library subscribers except school teachers.

By analysing real cases of norms, we realized that there exists a third type of
exceptions whose effect is to inhibit the fulfilment or violation of specific deontic
relations. These exceptions are different from those of the second type because
they are triggered by an event that is not the one regulated by the norm. For
example an exception to the Covid-19 Norm03 is: “if the house is on fire then
everybody is allowed to leave it”. This exception is activated by an event (the
house is on fire) that is different from the action that is regulated by the norm
(leaving the house). We model those exceptions in the following way:
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EXCEPTION TO Norm_n TYPE 3

ON ?event_n

WHERE conditions on event_n AND isGenerated(?dr, Norm_n) AND

NOT fulfills(?agent,?dr) AND NOT violates(?agent,?dr)

THEN exceptionToDR(?dr,?event_n)

For example the exception to Norm03 is formalized as7:

EXCEPTION TO Norm03 TYPE 3

ON ?en

WHERE Fire(?en) AND place(?en,?house) AND residence(?house,?agent) AND

isGenerated(?dr,Norm03) AND activated(?dr,?e1) AND

affectedPerson(?e1,?agent) AND NOT fulfills(?agent,?dr) AND

NOT violates(?agent,?dr)

THEN exceptionToDR(?dr,?en)

It is also possible to have exceptions to exceptions that will inhibit the acti-
vation of the three types of exceptions described above.

4 Operational Semantics of the Model

In this section, we will show how the model of norms proposed so far can be used
to monitor the temporal evolution of normative states on the basis of the events
occurred in the interaction among agents. Our goal is to compute the violation
or fulfilment of norms on the basis of actual events.

The operational semantics of the T-NORM model can be specified by pro-
viding an unambiguous procedure for translating the model into a target formal-
ism that already has an operational semantics. As target formalism we choose
production rules, because their structure and behavior make it fairly easy to
translate norms into them. Production rules, often simply called productions or
rules, have been investigated in computer science, and in particular in the AI
literature related to knowledge representation and reasoning [2]. A production
rule has the form:

IF conditions THEN actions.
It has two parts: an antecedent set of conditions that are tested on the current

state of the working memory and a consequent set of actions that typically
modify the working memory.

The operational semantics of a production rule system is given in the W3C
Recommendation of the RIF Production Rule Dialect8 by means of a labeled
terminal transition system. Such an operational semantics depends on the adop-
tion of a conflict resolution strategy for selecting the rule instance that must
fire when more than one rule is applicable. Our conflict resolution strategy is

7 Where affectedPerson is the property that connects the event of having a positive
swab with the tested person and it is used for connecting the activation event of the
norm with the activation of the exception.

8 https://www.w3.org/TR/rif-prd/#Operational semantics of rules and rule sets.

https://www.w3.org/TR/rif-prd/#Operational_semantics_of_rules_and_rule_sets
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as follows. Firstly, use the priority among rules (for example, as we will discuss
later, production rules for representing exceptions have higher priority than pro-
duction rules for expressing norms). Secondly, when two or more rules have the
same priority, use the order conflict resolution strategy, i.e., pick the first appli-
cable rule in order of presentation. This choice will not influence the final state
reached by the working memory because the actions of the production rules used
for expressing norms will never remove knowledge from the State KB, they have
effects only on the Deontic KB.

We will now describe the procedure for translating every norm written using
the T-Norm model into three production rules and every exception into one pro-
duction rule. In particular, every norm (Norm n) translates into three production
rules according to the following procedure:

1. Create one production rule equal to the fist ON...THEN part in the norm. Add,
among the conditions part of this production rule, the condition for managing
exceptions of the first type (i.e. NOT exceptionToNorm(Norm n,?e1), this
condition is satisfied if in the working memory there is not an exception to
Norm n that matches with the activation event.

2. Create one production rule equal to the second ON...THEN part in the norm.
Add, among the conditions part of this production rule, the condition for
managing the exception of the second and third type
(i.e. NOT exceptionToDR(?dr,?e2) AND NOT exceptionToDR(?dr,?en)), the
conditions for checking that the regulated action is performed before event3
(that for obligations may represent a deadline) and after the activation of the
norm, and the conditions for checking that the deontic relation, which can be
matched with the rule, is generated by Norm n and it is not already fulfilled
or violated.

3. Create one production rule for expressing the ON...ELSE part in the norm. This
rule is fired when the regulated action (represented in the norm with variable
event2) can no longer be performed before the event represented with the
variable event3. That is, when event3 has occurred (e.g. the deadline has
passed) and the regulated action (e.g. the payment) has not been executed.
The procedure adds, among the conditions of this production rule, the con-
dition for checking that event3 is happened and that the deontic relation,
generated by Norm n, is not already fulfilled nor violated. As for the previous
rule, the procedure adds also the conditions for managing the exception of
the second and third type.

Every exception to a given norm (Norm n) translates into one production
rule thanks to another automatic procedure. Since each exception has access
to all variables introduced in the related norm, the conditions in the norm are
merged with the conditions of the exception during the creation of the production
rule. In particular, conditions on e1 (asserted in the corresponding norm) are
added to the conditions of the production rule created from exception of the
first type. Conditions on e2 (asserted in the corresponding norm) are added to
the conditions of the production rule created from exception of the second type.
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Production rules that represent first-, second-, and third-type exceptions must
fire before production rules that express norms, so they have a higher priority
than the latter. Since production rules, used to formalise exceptions to norms,
act before the production rules of the norms themselves, they are able to inhibit
the norm for certain events.

Exceptions to exceptions are able to inhibit an exception to norm for cer-
tain events. They must fire fistly, thus production rules for representing excep-
tions to exceptions must have higher priority than the production rules for
expressing exceptions to norms. In order for one exception to exception to
inhibit the activation of one specific exception to Norm n, it is required to
add to the production rule of the latter a further condition for checking that
does not exist an exception to exception for its activation event, i.e. NOT
exceptionToException(Norm n,?e).

The conditions of the production rules are evaluated on a working memory,
which consists of: (i) the State KB where all the relevant events happened and the
actions performed by the agents are recorded, those events are represented using
the OWL Event Ontology ; and (ii) the Deontic KB, where all the information
for managing the evolution of the state of norms is stored.

Given that the working memory contains an OWL ontology, it is possible to
use OWL reasoning on its content for computing for example that the perfor-
mance of an action implies another one. This is a crucial aspect of the proposed
normative model because without any further addition, it is possible to reason
on the effects that the logical implication between actions has on norms fulfil-
ment or violation. In fact, we obtain that the obligation to perform an action is
fulfilled by any action that implies the regulated one. This is because we have
the following chain of implications: action a1 implies action a2 and a2 produces
a fulfilment, so the performance of a1 leads to a fulfilment. For example, since
selling an object to someone involves a transfer of ownership, a sale will fulfill
the obligation to transfer ownership of an object to someone. Similarly, the pro-
hibition to perform an action is violated by the performance of any action that
implies the regulated one. For example, since the reproduction of an audio file
implies its use, if the use of a particular audio file is prohibited its reproduction
will lead to an violation. Finally, the permission to perform a generic action
implies the permission to perform all the more specific actions implied by the
generic one. This is because the specific action implies the more generic one that
will activate the exception that in turn inhibits the norm. For example, if an
agent has permission to transfer the ownership of a product, through OWL rea-
soning it is possible to infer that she also has permission to sell or give someone
else the product.

5 Architecture of the Framework and Its Implementation

The architecture of the framework designed to compute the fulfillment or vio-
lation of a set of norms (formalized with the T-NORM model) is depicted in
Fig. 1. In the proposed framework, we take advantage of two types of computa-
tion: OWL reasoning on the State KB and forward chaining realized by means
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of production rules. OWL reasoning and forward chaining are combined in a safe
manner because they alternate. In particular, the main steps of a software able
to simulate the evolution of the norms state over time, is as follows:

1. Every time an event or an action occurs its representation is added to the
State KB, then an OWL reasoner is executed on the working memory. We
assume that only events that happen at the current instant of time can be
inserted in the State KB ;

2. Then run the forward chaining engine on the working memory resulting from
the previous step using the production rules generated from the norms and
from the exceptions and store the resulting State KB together with the Deon-
tic KB in the working memory;

3. Updates the variable that keeps track of the current instant of time to the
next significant time instant9 and go back to point 1.

Fig. 1. Architecture of the framework designed to compute the fulfillment or violation
of norms.

In our model we need to combine OWL reasoning and forward chaining
because it is not possible to use only OWL reasoning for computing the violation
or fulfilment of norms. In fact, when norms regulate time constrained actions, it
is necessary to deduce that the non-performance of the regulated action before
a deadline implies violation or a fulfilment. Given that OWL reasoning works
on an open world assumption, inferences of this type cannot be drawn directly.
One possible solution to this problem is computing the closure of specific classes
using an external routine as proposed in [5]. The advantage of using production

9 An instant of time is significant when its occurrence is significant for at least one
norm, e.g. it is the time instant in which a deadline expires or the time instant at
which an event or an action occurs.
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rules is a clear separation of two different types of computation, each one used
coherently with its nature, and having a more declarative solution where the
semantics of norms is expressed with production rules instead of using Java
code.

We tested the described framework by implementing a Java prototype that
uses Pellet10, an open-source Java based OWL reasoner, and the JENA general
purpose rule engine11 for realizing forward chaining on production rules. The
reason why we chose to use the JENA framework is that, differently from other
rule-based systems like DROOLS (used in [1]) or Jess (used in [7]), its rule engine
natively supports rule-based computations over an OWL ontology serialized as
an RDF graph. JENA provides forward chaining realized by means of an internal
RETE-based interpreter.

To test the framework, the various type of norms discussed in Sect. 3.1 were
manually translated into a set of production rules written using rule syntax and
structure of the JENA rule-based reasoner. The translation is done following
the procedure described in Sect. 4. Given that the JENA rule engine does not
natively support the possibility to specify the priority among rules, we intro-
duced a variable called salience whose value change from 0 to 2 and a new
builtin called isSalince(n) that can be used in production rules for checking
if the value of the salience variable is equal to n.

In order to simulate the evolution in time of the state of the norms, a set of
real actions matching with the activation condition of the norms or with their
regulated actions have been inserted in the State KB. As depicted in Fig. 2, in
order to check the fulfillment or violation of the different deontic relations created
by the various activation of Norm01, we entered three accesses to the restricted
traffic zone in the State KB. For one of these accesses (access3) we have entered
the corresponding payment and therefore the deontic relation that obliges the
owner of the vehicle to pay becomes fulfilled. For another access (access2) we
do not enter the corresponding payment and thus, when the deadline expires,
the deontic relation that expressed the obligation to pay becomes violated. For
the last of the accesses (access1), the vehicle is an ambulance, so thanks to the
exception, the obligation to pay is not even created. The Java project developed
for simulating the fulfillment or the violation of Norm01, the three production
rules generated starting from Norm01 and the production rule generated from
the exception to Norm01 (see Sect. 3.2) are available on GitHub12.

6 Related Work

In the literature, there are various proposals where models of norms and poli-
cies are formalized using different languages and where different frameworks
are investigated with the goal of providing various services. Useful services are:
searching of policies having certain characteristics [11], anticipating conflicts
10 https://github.com/stardog-union/pellet.
11 https://jena.apache.org/documentation/inference/#rules.
12 https://github.com/fornaran/tnorm.Norm01.

https://github.com/stardog-union/pellet
https://jena.apache.org/documentation/inference/#rules
https://github.com/fornaran/tnorm.Norm01
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Fig. 2. Fulfillment/violation of the different deontic relations created by the activations
of Norm01.

among policies [13], monitoring [6] or compliance checking [3], and simulation
for performing a what-if reasoning [14].

One of the pioneer techniques for normative reasoning is deontic logic [17].
Despite deontic logic approaches present some limitations, for example the trig-
gering and regulated actions are usually expressed with simple propositional for-
mulae [9], some of their basic concepts and insights are still used in many recent
approaches where other formal languages are used. In order to pursue inter-
operability among different normative systems, it is crucial to use a standard
language for the formalization of norms. Today’s there are two standards: the
previously mentioned ODRL policy expression language, which is a W3C Recom-
mendation and the OASIS standard LegalRuleML13, which defines a rule inter-
change language for the legal domain and is formalized using RuleML. ODRL
has many connections with the model proposed in this paper as it is a language
for expressing obligations, prohibitions, and permissions. A great limitation of
ODRL is not having an operational semantics that allows to compute the ful-
fillment or the violation of policies. In our previous work [6] we proposed to
extend the ODRL information model to express its operational semantics using
finite state machines implemented using production rules. In this work we have
moved further away from ODRL, in order to overcome some limitations. Firstly,
in ODRL it is not possible to specify generic policies applicable every time to a
different agent. In ODRL the debtor of a policy can only be a specific agent. Dif-
ferently, thanks to our abstract model for policies specification, it is possible to
apply one policy to all the agents who will perform a certain action (for example
having a positive swab) or who plays a certain role. Secondly, we do not con-
sider exceptions (and in particular permissions) at the same level of obligations
and prohibitions. From our perspective exceptions are derived concepts and they

13 https://www.oasis-open.org/committees/legalruleml/.

https://www.oasis-open.org/committees/legalruleml/
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exist only if there is a corresponding basic level construct that expresses obliga-
tions and prohibitions. Finally, while ODRL has a fixed set of deontic types, in
our model we focus on specifying the sequence of events that bring to a viola-
tion or to a fulfillment. An important aspect that the T-NORM and the ODRL
model have in common is the use of semantic web technologies. Although they
use them for different purposes: ODRL uses the OWL language for the specifi-
cation of the policy meta-model, while in the T-NORM model, as well as in the
OWL-POLAR model [13], the OWL language is used for modeling the actions
performed by agents and consequently to express the activation conditions and
the actions regulated by the norms.

We now continue our comparison by focusing on models of norms that
are expressed using semantic web languages and/or by using production rules,
although none of them combines OWL reasoning and productions as we do. Two
features that make our model innovative are: the formalization of the relation
between norms and time constraints and the possibility to directly describe what
sequence of events or actions would bring an agent to the violation or to the fulfil-
ment of a norm. In the OWL-POLAR framework [13], similarly to our approach,
the state of the world is represented using an OWL ontology. Differently, poli-
cies activation is computed by translating the conjunctive semantic formulae,
used for describing what is prohibited, permitted or required by the policy, into
SPARQL queries that are evaluated on the state of the world. In this work we
propose a straighter approach where norms conditions are directly evaluated on
the state of the world without the need of translations. An interesting aspect of
the OWL-POLAR framework that we plan to investigate in our future works, is
the mechanism for anticipating possible conflicts among policies, and for conflict
avoidance and resolution.

In [1] one type of norm is defined as a tuple that can generate a norm instance
that in turn can be fulfilled or violated. A norm specifies a target condition that
describes the state that fulfills the norm and a maintenance condition used for
defining the conditions that, when they no longer subsists, lead to a violation.
In this approach count-as rules are used to introduce institutional facts, regu-
lated by norms, starting from brute events. Differently from our model, where
it is possible to model different type of deadlines, in this approach only a time-
out property, i.e. a deadline for the reparation of the violation of a norm, is
taken into account. In [1] an interesting violation handling norm is formalized
that is activated when another norm is violated. Similarly to our approach the
monitoring is realized using a production system that concretely is implemented
using DROOLS, but no discussion is offered on the advantages of using OWL
reasoning and on how to combine it with forward-chaining realized by means of
production rules.

Another interesting proposal is the KAoS policy management framework [14].
In KAoS Semantic Web technologies are used for policy specification and man-
agement, in particular policy monitoring and enforcing is realized by a compo-
nent that compiles OWL policies into an efficient format. In the literature there
are other interesting approaches where norms are specified as rules but they are
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not taking advantage of the use of semantic web technologies. For example in
[15] norms are generators of commitments for the agents playing a certain role in
an artificial institution. In [7] norms have a type, they may have a deadline, and
given that their form is: preconditions → postconditions, those norms are easily
expressible with Jess rules14. Finally in [3] an extension of the ODRL language
is proposed to capture the semantics of business policies thanks to their transla-
tion into Answer Set Programming for making it possible to realize compliance
checking. An interesting aspect of this work is that the result of compliance
checking can be positive or negative with an explanation of the aspects of the
policy that caused the non-compliance.

In our future work, we plan to investigate the application of sanctions or
rewards and to study the formalization of the notion of institutional power, and
we plan to further investigate the expressive power of the model for specifying
other types of deontic relations.

Acknowledgement. The research reported in this paper has been funded by the
SNSF (Swiss National Science Foundation) grant no. 200021 175759/1. We acknowl-
edge the contribution to this research by Mr Marco Sterpetti during his master thesis
at Politecnico di Milano.

References

1. Alvarez-Napagao, S., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Normative
monitoring: semantics and implementation. In: De Vos, M., Fornara, N., Pitt, J.V.,
Vouros, G. (eds.) COIN -2010. LNCS (LNAI), vol. 6541, pp. 321–336. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21268-0 18

2. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc., San Francisco (2004)

3. De Vos, M., Kirrane, S., Padget, J., Satoh, K.: ODRL policy modelling and com-
pliance checking. In: Fodor, P., Montali, M., Calvanese, D., Roman, D. (eds.)
RuleML+RR 2019. LNCS, vol. 11784, pp. 36–51. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-31095-0 3

4. Fornara, N. : Specifying and monitoring obligations in open multiagent systems
using semantic web technology. In: Elci, A., Kone, M.T., Orgun, M.A. (eds.)
Semantic Agent Systems. Studies in Computational Intelligence, vol. 344. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18308-9 2

5. Fornara, N., Colombetti, M.: Representation and monitoring of commitments and
norms using OWL. AI Commun. 23(4), 341–356 (2010)

6. Fornara, N., Colombetti, M.: Using semantic web technologies and production rules
for reasoning on obligations, permissions, and prohibitions. AI Commun. 32(4),
319–334 (2019)

7. Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.P.: Implementing norms in
electronic institutions. In: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 667–673, New
York, NY, USA. ACM (2005)

14 Jess is a rule engine for the Java platform.

https://doi.org/10.1007/978-3-642-21268-0_18
https://doi.org/10.1007/978-3-030-31095-0_3
https://doi.org/10.1007/978-3-030-31095-0_3
https://doi.org/10.1007/978-3-642-18308-9_2


A Framework for Automatic Monitoring of Norms 27

8. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. J. Philos. Log. 42(6), 799–829 (2013)

9. Governatori, G., Rotolo, A.: A conceptually rich model of business process com-
pliance. In: Proceedings of the Seventh Asia-Pacific Conference on Conceptual
Modelling - Vol. 110, pp. 3–12. Australian Computer Society Inc. (2010)

10. Horrocks, I.: OWL: A description logic based ontology language. In: van Beek, P.
(ed.) CP 2005. LNCS, vol. 3709, pp. 5–8. Springer, Heidelberg (2005). https://doi.
org/10.1007/11564751 2

11. Oltramari, A., et al.: PrivOnto: a semantic framework for the analysis of privacy
policies. Seman. Web 9(2), 185–203 (2018)

12. Panagiotidi, S., Alvarez-Napagao, S., Vázquez-Salceda, J.: Towards the norm-
aware agent: bridging the gap between deontic specifications and practical mech-
anisms for norm monitoring and norm-aware planning. In: Balke, T., Dignum, F.,
van Riemsdijk, M.B., Chopra, A.K. (eds.) COIN 2013. LNCS (LNAI), vol. 8386, pp.
346–363. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07314-9 19

13. Sensoy, M., Norman, T.J., Vasconcelos, W.W., Sycara, K.P.: OWL-POLAR: a
framework for semantic policy representation and reasoning. J. Web Sem. 12, 148–
160 (2012)

14. Uszok, A., et al.: New developments in ontology-based policy management: increas-
ing the practicality and comprehensiveness of KAoS. In: POLICY 2008, 2–4 June
2008, Palisades, New York, USA, pp. 145–152. IEEE Computer Society (2008)
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Abstract. Intelligent agents assist people in complex scenarios, such as
managing teams of semi-autonomous vehicles. However, planning mod-
els may be incomplete, leading to plans that do not adequately meet
the stated objectives, especially in unpredicted situations. Humans, who
are apt at identifying and adapting to unusual situations, may be able
to assist planning agents in these situations by encoding their knowl-
edge into a planner at run-time. We investigate whether people can col-
laborate with agents by providing their knowledge to an agent using
linear temporal logic (LTL) at run-time without changing the agent’s
domain model. We presented 24 participants with baseline plans for sit-
uations in which a planner had limitations and asked the participants
for workarounds for these limitations. We encoded these workarounds as
LTL constraints. Results show that participants’ constraints improved
the expected return of the plans by 10% (p < 0.05) relative to base-
line plans, demonstrating that human insight can be used in collabora-
tive planning for resilience. However, participants used more declarative
than control constraints over time, but declarative constraints produced
plans less similar to the participants’ expectations, which could lead to
potential trust issues.

1 Introduction

Intelligent agents assist human operators in complex scenarios, such as task
planning to fulfil a set of objectives when supervising teams of semi-autonomous
vehicles [32]. The models used by these agents are typically both incorrect and
incomplete. They lack details of how to respond in unpredicted and unpredictable
situations, such as when they encounter a situation for which they have no
training data or have not been modelled explicitly [30].

Humans are far superior at recognising unusual situations and adapting
robustly. The ability for a person to provide an intelligent agent with addi-
tional context and information at runtime that is not part of its model (i.e. not
encoded by an expert at design-time) would increase the effectiveness and trust-
worthiness of the agent. Consider an example of a team of autonomous aerial
vehicles (UAVs) searching for missing hikers in an area near a small airport. Due
c© Springer Nature Switzerland AG 2022
A. Theodorou et al. (Eds.): COINE 2021, LNAI 13239, pp. 28–43, 2022.
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to aircrafts leaving and arriving at the airport, certain regions may be ‘no-fly’
zones. However, the underlying task planner has no concept of ‘no-fly’ zones
at all. Thus, the question is: how can a human operator input the constraints
required to the task planner to avoid the no-fly zones while still achieving its
objectives? We call such knowledge resilience constraints, as they are constraints
that improve the resilience of plans. Following [21], we define resilience as the
ability to recover from the consequences of an unpredicted or adverse event for
a given state of the system.

We define human-agent collaborative planning for resilient planning in
Markov Decision Processes (MDPs). We investigate whether people can recog-
nise the limitations of plans, identify how to work around the limitations, and
provide resilience constraints to a planner to find plans that adhere to these
workarounds. Our longer-term vision is to enable non-AI experts to input this
type of knowledge at runtime without modifying the domain theory. The agent
can then re-plan to improve the solution using this knowledge. We hypothesise
that constraints represented in LTL are suited to encode resilience constraints,
as these logics fit naturally with how people describe plan properties. To test
this hypothesis, we presented 24 participants with 6 tasks in a scenario involving
surveillance by a team of UAVs. In each task, a default plan was presented, and
an ‘intelligence update’ provided to the participants outlined additional informa-
tion not knowable by the planner. Participants were asked to provide resilience
constraints without changing the underlying domain model. We encoded partici-
pants’ responses as LTL constraints and measured the resilience of the resulting
plans. Our results showed that participants could provide insight leading to more
resilient plans, improving the expected returns by 10%.

2 Related Work

This section provides an overview of related literature in human-agent collabo-
rative planning and encoding domain-control knowledge in planning.

2.1 Human-Agent Collaborative Planning

In this paper, we are interested in incorporating user input into planners at run
time rather than being explicitly coded at design time by expert modellers.

While the idea of machine learning algorithms that learn from user demon-
stration is a well-studied topic (e.g. [2,31]), it is less so in human-agent planning.
TRAINS [16] and TRIPS [17] systems for mixed-initiative planning allowed users
to provide input into the planning system while other works include [1]. As far
as we are aware, Anderson et al. [3] was the first to investigate the combination
of human and computational expertise, aimed at avoiding search local optima
rather than improving resilience. Hayes et al. [19] investigate how HTN-like con-
straints can be learnt from task graphs provided by experts. While it is possible
to incorporate this into our work, we instead use linear temporal logic due to
its expressiveness. Icarte et al. [22] had similar objectives to ours, but we are
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interested in how people represent knowledge (advice) that they have without
introducing domain variables, something they did not investigate. De Giacomo
et al. [12] use LTL to specify restraining specifications that could assess solutions
using features unknown to the agent. They require external sensors to verify the
restraining specifications, and they do not require agents to be aware of the con-
straints, while this is imperative for our agents. Similarly, they do not undertake
user studies.

A complementary approach to ours is enabling humans to modify a reward
function. Kelley et al. [23] proposed an interface that allows an operator to
increase and decrease the agent’s reward functions; e.g. put a high reward on
visiting a desirable area, allowing the operator to create more resilient plans.
While they did not perform controlled human behavioural experiments, their
approach would be complementary to ours, allowing simple constraints that can
be modelled as rewards. For managing large teams of agents, we believe that the
approach of using concepts such as LTL constraints would scale better because
LTL is a better representation of the way that people describe behaviour [25].

The work from Kim et al. [25] is the closest related work to ours, and their
experimental setup inspired ours. In their study, participants provided strate-
gies in natural language for solving planning problems. These strategies were
encoded as preferences in LTL, and new plans were generated. In five out of the
six domains, the collaborative plans were lower cost than the non-collaborative
plans. Kim et al. [25] argue that LTL formulae are more suitable for representing
how people instruct subordinates and are more succinct than explicitly enumer-
ating the steps of a plan. The difference is the fundamental aim of the work:
Kim et al. [25] aim for strategies over entire domains that improve the cost
and solving time of plans – in other words, design-time knowledge from people
who understand planning—while in this work, we aim to increase resilience in
individual, unpredicted situations using knowledge from operators.

2.2 Encoding Domain-Control Knowledge in Planning

Domain-independent planners cope with the complexity of planning through
domain-independent heuristics [20]. However, domain-independent heuristics are
not always well informed; for example, they miss key knowledge when interac-
tions between goals are strong [18].

Domain-specific Control knowledge (DCK) refers to knowledge for solving
a particular problem, and is independent of the domain theory of a problem.
It has been shown to increase the scalability of planners [4,27]. There are a
wide range of formalisms for representing DCK, including macro-actions [10],
abstracted state features for generalised planning [24], procedural domain-control
knowledge [5], hierarchical planning [27], and temporally-extended goals [4,8,9].
In this paper, we use temporally-extended goals, specified as linear temporal
logic (LTL) formula, [8,9] to encode human knowledge. LTL-based planning is
discussed in Sect. 3.3. As far as we are aware, experiments and applications using
such formalisms have been performed only by using domain-control knowledge
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hand-coded by planning experts at design time, with only a comparatively few
experiments looking at how expert users could supply such knowledge [25].

3 Model of Collaborative Planning for Resilience

This section defines our model of resilient planning for MDPs and extends this
to human-agent collaborative planning using temporal constraints.

3.1 Resilient Planning

Resilience is the ability to recover from the consequences of an unpredicted or
unpredictable event for a given state of the system [21]. In this paper, we are
interested in one type of resilient planning: when an automated planner cannot
possibly derive a correct solution because it lacks the information and concepts
necessary to do so. We assume that the information regarding the unpredicted
event is known to a human operator, who can judge the resilience of the current
plan. The challenge is that the model is obsolete; that is, it no longer represents
the problem at hand, and an automated planner could only derive a correct
solution by coincidence because it lacks the information and concepts necessary
to represent the knowledge that is available to the operator directly. This is an
important problem in many domains with incomplete models, and there will
always be attributes for which automated planning tools cannot plan.

The challenge is that the planner has one model, but the resulting plan is
executed in some environment that is unknown to the planner. This is, of course,
a ubiquitous challenge in artificial intelligence: models used to make decisions
are by definition incomplete simplifications of the world they model. A successful
plan may work in one scenario while failing in another, but both correspond to
the same scenario in the abstract model space.

To define this concept formally, we first define a conceptual model for plan-
ning. We adopt a common model of planning using Markov Decision Processes
[29].

Definition 1 (Markov Decision Process (MDP) [29]). A Markov Decision
Processs (MDP) is a tuple Π = (S,A, P,R, γ), in which S is a set of states, A is a
set of actions, P (s, a, s′) is a transition function from S×A → 2S, which defines
the probability of action a going to state s′ if executed in state s, R(s, a, s′) is
the reward received for transitions from executing action a in state s and ending
up in state s′, and γ is the discount factor.

Definition 2 (Planning Problem [29]). A planning problem is a tuple
(Π, I,O), in which I ∈ S is the initial state and O is the objective to be achieved.
In the simplest case, a goal-directed MDP [18], O is just a set of goal states,
such as O ⊂ S, but a more common objective is simply to maximise the expected
discounted reward [29]. or potentially satisfying preferences over plan trajectories
[15].

The task is to synthesise a policy π : S → A from states to actions that start
in state I and achieve object O.
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Definition 3 (Resilient Planning). We define a resilient planning problem
as a tuple (Π,Π ′, I, O), in which Π = (S,A, P,R, λ) is the base MDP and
Π ′ = (S′, A′, P ′, R′, λ′) is the augmented MDP. Using Π, the automated planner
synthesises a policy π : S → A that achieves the objective O from initial state I
over the augmented model Π ′. We assume that S ⊆ S′ and A ⊆ A′.

For a reward-maximising MDP problem, the planner produces a policy π,
with the aim of maximising Σ∞

t=0γ
′tR′(s′

t, a
′
t, s

′
t+1) over all trajectories possible

from π. Note here that the reward function, transition function, etc., are given
by the augmented problem Π ′, while the planner only has access to the base
problem Π.

Clearly, the general task of resilient planning is not feasible, as Π and Π ′

could model completely different domains, e.g. a shipping port vs. a manufactur-
ing line. However, given reasonable assumptions about the relationships between
Π and Π ′, such as S ⊆ S′ and A ⊆ A′, the problem becomes more feasible.
For example, an optimal policy on Π may still achieve high (but not maximal)
rewards on problem Π ′ if the transition probabilities and rewards change only
slightly.

3.2 Human-Agent Collaborative Planning for Resilient Planning

In our definition of resilient planning, Π is the planning model, and Π ′ is
the actual environment. In collaborative human-agent planning, the model Π
is known to the planner, and the base model Π and alternative model Π ′ are
both partially known to the human. For example, the human represents the
concepts and locations of no-fly zones in their mental model.

Definition 4 (Collaborative resilient planning). We define a collaborative
resilient planning problem as a resilient planning problem (Π,Π ′, I, O). The task
of the human is to define an augmented initial state I ′ and objective O′ for the
automated planner to synthesise a policy π : S → A using (Π, I ′, O′), such that
π solves the objective O from initial state I under problem Π ′.

Note that a human can modify objectives, but not the domain model (tran-
sitions). There are two main reasons for only modifying the objectives. First, it
treats the planning agent as a black-box, making it easier to design interaction
with such agents, as highlighted in [12]. Second, we believe that the cognitive
demands of modifying action definitions and state spaces would be difficult and
error-prone for operators under time pressure and require a level of knowledge
that unduly restricts usability, while changing objectives may be more feasible
[25].

3.3 Resilient Planning Using Temporal Constraints

A key to solving a collaborative resilient planning problem is how to structure
O′. We claim that temporal constraints provide a suitable formalism to describe
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the ‘shape’ of solutions. That is, they propose a structure over the generated
plans, rather than just goal states or rewards. In short, planners that support
temporal constraints are domain-configurable planners in the taxonomy of Nau
[26], different from domain-specific planners because they can generalise to other
domains, but more flexible than domain-independent planners because they sup-
port domain-control knowledge. These claims align with recent works, e.g. [22].

Temporal constraints encode properties that hold over the whole sequence
of states in a solution plan [4,8,9]. They are flexible enough to specify liveness
constraints (some good thing eventually happens), safety constraints (some bad
thing never happens), and fairness constraints (an outcome will happen infinitely
often if attempted an infinite number of times). A standard way for expression
temporal constraints is linear temporal logic.

Definition 5 (Linear Temporal Logic [28]). Linear temporal logic (LTL) is
an extension of propositional logic with modal operators to describe temporal
relationships between states on a trajectory. Given a set of atomic propositions
P , the grammar for LTL is defined as follows:

φ ::= p | ¬φ | φ ∧ φ | ©φ | φUφ,

in which p ∈ P , ¬ and ∧ are logical negation and conjunction respectively, ©φ
specifies that φ will hold in the next state, and U is the ‘until’ operator, for which
ψUφ states that ψ will hold until φ becomes true. New temporal operators can be
derived from these basic definitions, such as always achieving a particular state,
or achieving a particular state at some point in the future.

Definition 6 (LTL Planning). An LTL planning problem is a tuple
(Π, I,O, φ), in which Π describes an MDP, I and O are the initial states and
objectives, respectively, and φ is an LTL formula.

A policy is valid iff it achieves the objectives and iff the trajectories generated
from the policy satisfy the temporal constraint φ.

There exists several LTL solvers in classical planning [4,9], non-deterministic
planning [8], and planning with MDPs [15]. Other works include [6,7,11,13,14].
Most of these solvers address the problem by encoding the LTL constraint as a
finite state machine (FSM) and then derive a new planning problem that is the
cross product of the FSM and the original planning problem. The underlying
solver can solve this product problem. The accepting states are reached if a
generated trajectory satisfies the LTL constraint. The method of solving is not
the focus of this paper.

4 Evaluation

Our evaluation goals are: (1) to determine whether participants can identify
invalid plans due to the incompleteness of the planning model; and (2) whether
participants can improve plan resilience via insights encoded as temporal con-
straints.
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4.1 Domain

We simulated an aerial surveillance scenario based on an application of interest
to our industry partner. Participants played the role of an operator controlling
multiple unmanned aerial vehicles (UAVs), with the objective of undertaking
surveillance on assets and targets (unidentified sea vehicles) in the environment.
The UAVs are capable of: (1) navigating between cells specified by coordinates;
(2) picking up and dropping pallets; and (3) taking and communicating photos
of the targets. The objectives are to take photos of all targets, visit each asset
at least once, and deliver pallets to assets when required. An intelligent agent
assists in achieving the default objectives of surveillance, but the planning model
used by the planner makes some assumptions: 1) all targets are unknown; 2) the
objectives of taking photos, visiting assets, or delivering pallets can be achieved
in any order; 3) the targets and assets move at approximately the same speed;
and 4) all UAVs are well resourced to complete their missions. While conceptually
the task seems straightforward, the set of possible allocations is combinatorially
large, and solving this is difficult without automated assistance for anything
other than trivial problems.

4.2 Protocol

We asked 24 participants, from a variety of backgrounds such as computer sci-
ence, management, defence science, physics, law, and government, to complete a
series of six surveillance tasks. Over half had a qualification in computer science,
and 5 were females. Each task had the same baseline objectives described above
and additional ‘Operator Preferences’, which are ordered preferences that the
plans should achieve for this specific task only, but not in general. For example,
identifying particular targets before others. The models for each task were spec-
ified as a deterministic planning task using PDDL 3.0, and represent the base
model Π from Definition 4.

Baseline Plan. The participants were presented with a baseline plan that
achieves the baseline objectives, generated using state-of-the-art planning that
models temporal preferences, LPRPG-P [9]. To help the participants visualise
this task, the plans were visualised on simple maps that showed the assumed
trajectory of targets (if they were non-stationary) and the proposed plan for the
UAVs. One scenario is shown in Fig. 1.

Intelligence Updates. Participants received ‘updates’, which are new information
derived from intelligence reports that may affect a plan. Importantly, updates
contained some information that was not considered in the original model. For
example, for the scenario in Fig. 1, participants were told that certain coordinates
contained heavy fog, and thus taking a picture of the (moving) target in this fog
may be unsuccessful. However, the planning model had no concept of ‘fog’, and
as such, participants could not simply tell the planner to avoid fog.
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Table 1. The six tasks completed by participants.

Scenario Description

T1 Fog in a specific area, limiting visibility to take
photos of targets

T2 One target identified as friendly, one identified as
hostile, possessing missiles that could take out a
drone

T3 One UAV facing heavy headwinds and will take
longer than anticipated to reach its target

T4 One UAV out of service and one target is friendly

T5 Two UAVs low on fuel, with different estimates
of their likelihood of reaching their targets

T6 Uncertainty about the location of a resource that
must be delivered to an asset

Fig. 1. Example of one of the tasks used in the study.

Resilience Constraints. For each task, participants were asked to: 1) provide an
alternate plan that satisfies the baseline requirements, operator preferences, and
the intelligence update; and 2) to write, in natural language, what goals and
preferences they would tell the intelligent agent to fulfil so that it would gener-
ate the plan provided in item (1). We note that the participant constraints were
constraints on the UAV plans and not on the environment, that is, participants
could only provide preferences for the UAVs. Table 1 gives an overview of the
intelligence updates received for all six scenarios, that is, six participant tasks.
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The complexity of the aerial surveillance scenario is that participants had to con-
sider how state constraints affect the concurrent behaviour of multiple vehicles
satisfying the baseline requirements, operator preferences, and the intelligence
update. While the participants were required to specify manual plans, they were
provided with baseline plans, to begin with. This means that they worked with
an intelligent planner rather than solving the task from scratch.

4.3 Procedure

The experiment began with a training task using the same domain to ensure
that the participants understood the task, and then participants were given six
tasks of varying complexity. Participants typically took between 30–40 mins to
complete the study, although they were not given any time limit.

Table 2. Examples of preference encodings, where UAV1 and UAV2 are unmanned
aerial vehicles and T1 is a target.

Statement Encoding

Move UAV1 to cell 4,3 and take

picture of T1

(preference p1 (sometime-after (agentloc uav1 v4 v3)

(have-photo t1 uav1)))

UAV1 to take all photos (forall (?t - target)

(preference p1 (sometime (have-photo?t uav1))))

D2 to deliver pallet R1 (preference p1 (sometime (carry-pallet r1 d2)))

The authors manually encoded the participants’ resilience constraints into
LTL constraints, which took an average of 30 min for all six tasks. Table 2 lists
some examples of the participant responses and the encodings using PDDL 3.0.
The augmented plans were generated using LPRPG-P [9] as planning problem
(Π, I ′, O′). We did not set any restrictions on memory and time available to the
planner; our problems were solved on a 64-bit machine with 8GB ram and an i7
processor.

4.4 Assessing Plans

While the planning tasks were specified as deterministic multi-agent plans, the
second model, which we call the assessment model, was an MDP, which modelled
the rewards for completing tasks and the uncertainties in the environment. Note
that we did not provide the assessment model to the participants because we
believe that giving all of the underlying MDP model does not reflect reality, and
in most cases, this information is not available.

A deterministic baseline model formed the base of the MDP model, simply
using all of the same variables, actions, preconditions, and effects. Then, the
following modifications were made. For each goal/preference, a reward of 20 was
given, while for each action in a plan, a cost of 1 was applied. For ordering
between preferences (e.g. each preference A before preference B), a reward of 10
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was given if this ordering was preserved. Any task containing quantified uncer-
tainties (that is, where participants were given an uncertainty estimate), these
uncertainties were used; while for unquantified uncertainties, we used 50% as the
estimate. From this assessment model, the expected return of the baseline plan
and participants’ plans were calculated using a simple custom solver. As well as
the baseline plan, participants’ plans were compared against an optimal plan,
which is a plan that maximises the expected return given the MDP assessment
model.

5 Results

5.1 Automated Plans Encoded as LTL

Table 3 compares the baseline plans with the plans generated using the resilience
constraints. The Base Plan is the expected return of the original plan generated
without the intelligence update. The Opt. Plan is the maximum expected return
with respect to the intelligence update, generated using a simple customised
solver. The Auto. Plan shows the average and standard error of the expected
return of 24 plans generated from using the automated planner (LPRPG-P) with
the participants’ constraints encoded as LTL. Improvement is the percentage
improved between the baseline and manual plan, while Optimality is the per-
centage difference between the optimal and automated plans. The p-values are
derived using a Mann-Whitney U test (ranked sum test) for unpaired samples.

Table 3. Comparing automated plans with baseline and optimal plans. Numbers in
brackets represent the standard error.

Task Base
plan

Opt.
plan

Auto.
plan

Improvement Optimality

T1 72 83 80.9
(0.4)

12.3% (p < .01) −2.6% (p < .01)

T2 65 87 70.7
(1.9)

8.8% (p < .01) −18.7% (p < .01)

T3 76 92 85.8
(1.2)

12.9% (p < .01) −6.7% (p < .01)

T4 63 68 67.3
(0.8)

6.7% (p < .01) −1.1% (p = .76)

T5 53 70 58.7
(0.8)

10.8% (p < .01) −16.1% (p < .01)

T6 70 80 76.9
(0.3)

9.9% (p < .01) −3.9% (p < .01)

Ave. 10.2% −8.2%
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Table 4. Execution times for automated plans. Numbers in brackets represent the
standard error.

Time (seconds)

Task Base
plan

Opt.
plan

Auto. plan

T1 0.32 0.40 0.7 (0.1)

T2 0.77 1.05 4.4 (0.4)

T3 0.24 460.50 317.9 (40.5)

T4 0.79 21.00 4.9 (1.7)

T5 0.25 27.26 1.1 (0.2)

T6 1.05 2.27 2.3 (0.7)

Ave. 0.57 85.41 55.2 (21.5)

The results support that LTL encodings are suitable for representing par-
ticipants’ plans. Across all tasks, participants were able to express preferences
such that the resulting plans (generated by the planner) were significantly more
resilient plans (p < 0.05). In only nine instances across all of the 144 tasks, par-
ticipants did not generate an improved plan, and only one had a lower expected
return. In this case, this was due to a misunderstanding of the intelligence
update. On aggregate, the resilient plans were sub-optimal for five of the six
tasks (p < 0.05). For task 4, most of the participants’ preferences generated an
optimal plan.

The results also demonstrate that participants successfully used the intelli-
gence update to identify problems with the baseline plan and work around this.
Over the six tasks, participants were consistently able to specify plans with an
improved expected return over the baseline plan. Participants did not always
specify the optimal plan. This could be due to the short training session and
only six tasks not being enough to learn many subtleties of the domain. Further,
participants were not given quantified uncertainties and rewards, so they could
not optimally calculate the maximum expected reward. We did not provide the
complete assessment model to the participants because this information is not
available in reality. More importantly, our results show that even with incomplete
information, participants could still have an impact.

Table 4 shows the execution times for generating plans. These results show
that using resilience constraints (both our own and the participants’) take longer
to generate the plans than the baseline. This is because preferences are soft
constraints that typically make the problem harder: plans need to satisfy both
the baseline goals and the soft constraints, and soft constraints do not prune
the search space. The results for task 3 particularly vary significantly between
participants, with some plans generated in 1–2 s, while others ranged from 300–
500 s. From our investigations, we believe this is a limitation of the planner
rather than the participants’ responses. Table 5 provides some examples of the
encodings and the execution times for some of the responses for task 3.
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Table 5. Examples of task 3 encodings and execution times.

Statement Encoding Planning
time (s)

Assign D1 to take photo of T2
and D2 to take photo of T1 to
intercept targets at minimum time

(preference intercept-t1
(sometime (have-photo t1 d2) ))

(preference intercept-t2
(sometime (have-photo t2 d1)))

1.11

I want to turn D1 off so that D2
takes all photos and visits all
assets

(preference not-move-d1
(always (agentloc d1 v0 v7)))

(preference not-d1-to-t1
(always (not (have-photo t1

d1))))
(preference not-d1-to-t2

(always (not (have-photo t2
d1))))

460.5

I want D2 to photos of both
targets, T1 and T2

(forall (?t - targets)
(preference d2-to-targets

(sometime (have-photo?t
d2))))

184.8 s

5.2 Comparison of Manual and Automated Plans

Table 6 shows the absolute and relative differences of expected return between
manual and automated plans. There was no significant difference for tasks 3–6
(p < 0.05). This is further evidence that the LTL formula is a suitable repre-
sentation for capturing resilience constraints. For task 1, the automated plans
had a higher expected return than the manual plans (p < 0.05). This is the
fog scenario from Fig. 1. In this case, many participants’ manual plans moved
UAV1 to cell (4,3), then moved three cells to asset A1. However, for most, their
resilience constraints stated UAV1 to NOT take a photo in cells (4,2) or (4,3),
which allowed the planner to find the more efficient path of taking the photo at
cell (4,1), then moving just one cell to asset A1. This demonstrates one advan-
tage of declarative constraints: the planner can find the best way to achieve the
constraint. We believe that we would see this more often for more complex sce-
narios because specifying a complete control plan would be infeasible. For task
2, we see the inverse: the manual plans have a higher return than the automated
plans. The LTL constraints did not control the UAVs in an intended way. How-
ever, we believe that had the participants been able to see the generated plans,
they would have corrected the constraints.

5.3 Control vs. Declarative Preferences

We analysed the participant responses and classified the resilience constraints
as either control or declarative. Control constraints provide explicit control com-
mands, such as manoeuvring a particular UAV to a particular location, then
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Table 6. Difference between expected return of manual and automated plans. Numbers
in brackets represent the standard error.

Task Manual
plan

Auto
plan

Average
diff

Ave. Relative
diff

T1 79.7
(0.3)

80.9
(0.4)

1.2 (0.5) 1.4% (p < .010)

T2 73.8
(2.1)

70.7
(1.9)

−3.1
(1.6)

−4.8% (p = .013)

T3 85.4
(0.9)

85.8
(1.2)

0.4 (0.9) 0.2% (p = .497)

T4 67.5
(0.4)

67.3
(0.8)

−0.3
(0.4)

−0.6% (p = .192)

T5 58.8
(0.8)

58.7
(0.8)

0.0 (0.6) −0.2% (p = .153)

T6 77.0
(0.2)

76.9
(0.3)

0.0 (0.3) −0.1% (p = .841)

Ave. −0.3
(0.2)

−0.7%

taking a photo, then going to an asset; while declarative constraints specify a
property, such as that the UAV could take a photo of a particular target. There
were 32 and 112 control and declarative types respectively.

Fig. 2. Control vs. declarative information and plan
similarity

Figure 2 shows that
participants used declar-
ative preferences more
as they completed more
tasks, which could relate
to either experience, task
complexity, or both. We
compared the differences
between manual and
automated plans, defined
as the number of actions
present in the manual
plan but not in the auto-
mated plan. No significant difference was noted in plan differences overall
between the preferences types. We compared the plan differences between the
first and last three tasks, that is, T1−T3 (M = 5.5, SD = 3.2) & T4−T6 (M = 6.5,
SD = 2.9); increased use of declarative preferences leads to significant differences
between plans. This is not surprising because the planner has more control over
the solution with declarative preferences. While this is only over six tasks, we
expect this result to hold more generally. Such differences raise potential issues
of trust and transparency. If not understood and accepted by the operator, such
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differences could decrease the operator’s trust in intelligent agents and ultimately
result in disuse.

6 Conclusions

We investigated whether people could recognise the limitations of automatically-
generated plans and specify constraints on new plans that are more resilient.
Twenty-four participants specified constraints for improving baseline plans that
had limitations. Our results show that participants’ constraints expressed using
LTL improved the expected return of the plans, demonstrating the potential
to include human insight into collaborative planning for resilience. In future
work, we aim to perform experiments with participants in the loop, enabling
them to specify preferences using a restricted language that can be automatically
encoded as LTL constraints and refine the solution iteratively. We will investigate
more intuitive and natural methods for eliciting resilience constraints to enable
automatic encoding in LTL. We also aim to explore tasks of varying complexity
levels in different domains. Regarding presenting the tasks to the participants,
we will explore different approaches, such as randomly presenting the tasks of
varying complexity.
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Abstract. In multi-agent systems, the agents may have goals that
depend on the common interpretation of actions and other agents acting
in the system. These goals are thus social goals. Artificial institutions
are used to provide such a social interpretation by assigning statuses to
the concrete elements that compose the system. These statuses are sup-
posed to enable the assignee element to perform functions that are not
exclusively inherent to their design features. However, the consequences
in the environment of the enabled functions are not explicit in the exist-
ing models of artificial institutions. As a consequence, (i) agents may
have difficulties reasoning about the achievement of their social goals
and (ii) these institutions are not well instrumented to receive incom-
ing agents in the case of open systems. Considering these problems, this
paper proposes the addition of purposes in artificial institution models
to express the consequences in the environment of the constitution of
status-functions helping the agents to reason about the fulfillment of
their social goals. We evaluate the proposal in some scenarios, show-
ing how the agents can use purposes to reason about the satisfaction of
their social goals in institutional contexts and how the institution can be
flexible enough to support new agents operating in the system.

Keywords: Purposes · Status-functions · Artificial institutions ·
Multi-agent systems

1 Introduction

Multi-agent systems (MAS) are systems composed of autonomous computational
entities, henceforth referred to as agents, that can interact with each other within
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a dynamic environment to achieve their common and individual goals [39]. The
interaction among the agents is at the very core of MAS, making it a useful
approach to handling computational problems involving social aspects [37]. One
of these aspects is the shared interpretation of the facts occurring in the system.
For example, consider a scenario where the agent Bob has the goal of holding a
book. To satisfy this goal, Bob can buy a book owned by Tom. To this end, Bob
needs to execute an action that means giving a value in exchange for a good and
waits for the agent Tom to understand this action before handing him the book.
In this scenario, Bob’s goal is a social goal because it depends on the common
interpretation of action and other agents acting in the system.

Inspired by human societies, some authors propose models and tools to pro-
vide this common interpretation for computer systems and, in particular, for
MAS [20]. They usually consider that some concrete facts occurring in the envi-
ronment constitute (or count as) institutional facts [6,7,9,16]). The attribution
of status to concrete elements happens through the enabling of the constitutive
rules in a process called constitution [31,32]. For example, agents acting in an
e-commerce scenario may constitute (or count as) buyers, while some of their
actions may count as payments. Artificial Institutions are the component of the
MAS that is in charge of defining the conditions for function assignment to the
concrete elements (e.g., an agent to become a buyer or an action to become a
payment).

Environment

Constitute Affect

Institution

Fig. 1. Relations between institution and environment.

The existing works on Artificial Institutions are mainly concerned with spec-
ifying and managing the constitution, which is the institutional consequence of
facts occurring in the environment (shown on the left side of Fig. 1). However,
the constitution may enable new facts in the system that potentially lead to
environmental changes. For instance, the constitution of payment might acti-
vate a norm obliging the agent that counts as a seller to deliver a book to
the agent that counts as a buyer. If the norms are fulfilled, the environment
moves to a state where the agent that counts as the buyer holds a book. These



46 R. R. Cunha et al.

environmental consequences of the constitution of status-functions remain unex-
plored (shown on the right side of Fig. 1). As far as we know, proposals described
in the literature do not provide the means for the institution to explicitly express
the consequences in the environment of the constitutions associated with the
status-functions. While the status-functions are explicit, the environmental con-
sequences of constitutions are implicit.

The disadvantages of not expressing the consequences in the environment
of the constitution of status-functions can be observed from the perspective of
both the agents and the institution. From the perspective of the agents, they
may not exploit the constitution of status-functions to achieve goals that match
the environmental consequences of such a constitution. For example, consider
that Bob is coded to achieve its goal of holding a book by performing an action
called transfer, available in the environment and acknowledged by the institu-
tion as a payment. The agent needs to be reprogrammed if, for instance, the
action transfer becomes unavailable, if the institution changes so that transfer
no longer counts as a payment, or if it needs to exploit the constitution of new
status functions (possibly in different institutions) that produce the same effect
of payment. The constitutive rules are not enough to make it explicit that consti-
tution of the status-functions can lead to a state of the world where some agent
has achieved its social goals. The connection between the execution of an action
that constitutes a status function and its consequences in the environment is
implicit in the system developer’s mind.

From the perspective of the institution, it may not support agents coded for
other similar institutions. Institutions have constitutive rules that match with
the actions that agents need to perform. New constitutive rules need to be added
to preserve compatibility1 when new agents, programmed to constitute different
status functions, join the institution. However, the constitutive rules do not have
the role of preserving the compatibility between the agents and the institution.
The main disadvantage of this ad-hoc solution is that the institutions need to
be programmed explicitly to each possibly incoming agent.

Although the work on artificial institutions focus mostly on supporting the
regulation of the system, institutions should also help agents to achieve their
social goals [30]. However, as they are currently conceived, institutions do not
specify the environmental consequences associated with the constitution of the
status-functions. They could better support the reasoning of agents [30] concern-
ing the satisfaction of their own social goals and be more prepared to receive
agents designed by different developers. Thus, the main contribution of this paper
is a model based on the notion of purpose that explicitly represents the environ-
mental consequences of the constitution of the status-functions and their relation

1 Compatibility in this work refers to the situation in which the vocabulary used
in the specification of the agents works appropriately with the vocabulary of the
institutional specification. Compatibility can occur in several ways, including (i) if
the vocabulary present in the agent’s specification is identical to the institutional
vocabulary or (ii) if the programmer encodes compatibility with the institutional
specification within the agent.
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with agents’ goals. It is inspired by the “Construction of the Social Reality” by
John Searle [31,32] theory that seems to be fundamental for comprehending the
social reality.

This paper is organized as follows: Sect. 2 introduces the main background
concepts necessary to understand our proposal and its position in the litera-
ture. It includes philosophical theory and related works. Section 3 presents the
proposed model and its required interfaces. Section 4 implements the proposal
based on some examples that allow us to identify some limitations and advan-
tages that the model offers on the agent and institutional perspective. Finally,
Sect. 5 presents some conclusions about this work and suggests future works.

2 Background

This section presents the essential concepts which base our contribution. Sub-
section 2.1 presents the philosophical concepts that support our contribution.
Subsection 2.2 briefly describes state the art in artificial institutions concerning
the explicit representation of the consequences associated with the institutional
concepts.

2.1 Philosophical Background on Institutions

Institutions are composed of institutional facts based on status functions and
constitutive rules [31,32]. Status-functions are statuses that have associated func-
tions. These statuses enable concrete elements to perform functions (associated
with the statuses) that cannot be explained through their physical virtues. Con-
stitutive rules specify the assignment of status-functions to concrete elements
with the following formula: X count-as Y in C. For example, a piece of paper
count-as money in a bank, where X represents the concrete element, Y the
status-function and C the context where that attribute is valid.

Some functions are called agentive functions because they are assigned from
practical interests of the agents [32, p.20]. These practical interests of agents
are called Purposes. The purposes are associated with the consequences in the
environment of the constitution of status-functions that are aligned with the
agents’ interests. For example, an agent has a goal of holding a book when it
delivers a paper note that institutionally is considered as payment. In MAS,
hold a book represents a state of the world that is associated with a purpose.
This purpose is achieved when the status-function payment is constituted. That
is, the agent satisfies its goal of holding a book when it constitutes the status-
function payment. The consequences may differ if the agent delivers a paper
note in a different context. This is because the purposes must always reflect the
interest of all agents involved in that context. Moreover, the agents involved in
the interaction must have the same understanding of these facts (i.e., about the
purposes) [32, p.22]. Otherwise, none of them achieve their social goal.

From that theory, it is possible to conclude that a similar system can be
applied to MAS to make explicit the environmental consequences of the consti-
tution of the status-functions (i.e., the purposes) that compose the institutions.
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It will permit to improve the agents’ reasoning about the satisfaction of their
social goals and overcome the difficulties that motivate the realization of this
work.

2.2 Institutions in MAS

In MAS, several works propose artificial institutions as a counterpart of human
institutions. In different ways, these works use the count-as relationship, estab-
lished through the constitutive rules proposed by Searle, to support the regu-
lation of the system [5]. Activation of a constitutive rule (i.e., its constitution)
usually activates a regulative rule in the system, inflicts a regulative rule, etc.
However, in this work, we believe that the status-functions, when constituted,
can bring environmental effects to the system, in addition to altering the dynam-
ics of regulative rules. The agents can exploit these effects to achieve their social
goals. For example, in the bookstore example, the constitution of payment leads
the environment to a state where an agent holds a book. This section reviews
state of the art on artificial institutions concerning the explicit representation of
the effects of the constitutions of the status-functions.

Works on Artificial Institutions are usually inspired by the theory of John
Searle [31,32]. Some works present functional approaches, relating brute facts
to normative states (e.g., a given action counts as a violation of a norm). These
works do not address ontological issues, and, therefore, it becomes even more
difficult to support the meaning of abstract concepts present in the institutional
reality. Other works have ontological approaches, where brute facts are related
to concepts used in the specification of norms (e.g., sending a message counts
as a bid in an auction). However, these works have some limitations that are
discussed below (see a detailed analysis of works that implement Searle’s theory
in [11]).

Some approaches allow the agents to reason about the constitutive rules [1,
6,7,10,16,36]. However, the status-function Y is usually just a label assigned to
the concrete element (X ) and used in the specification of the regulative norms.
Therefore, Y does not seem to have any other purpose than to serve as a basis for
the specification of stable regulative norms [1,35]. Some exceptions are (i) in the
works of [16–19] where Y represents a class formed with some properties as roles
responsible for executing actions, time to execute them, condition for execution,
etc.; (ii) in [35] where Y is a general concept, and X is a sub-concept that can
be used to explain Y. Although the exceptions contain more information than
just a label in the Y element, these data are somehow associated with regulative
norms.

There are no models that make explicit what the constituted elements (i.e.,
the status-functions) perform in the institution. Thus, the agents may not under-
stand that the actions performed can also satisfy their social goals. For example,
the agent’s goal of holding a book can be a state of the world pointed to by a pur-
pose that is associated with payment status-function. Considering the previously
described example of selling books, there is currently no way for Bob to under-
stand that the action performed, if interpreted through its purpose, can also
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satisfy its social goal. It occurs because there is not work that makes explicit
the purposes of the status-functions. If the purposes of status-functions were
made explicit, the status-functions’ name would be less relevant to the system’s
correct functioning. Also, new agents could enter the system and understand the
purposes of carrying out some functions that have institutional interpretation
and thus resolve themselves to satisfy their goals.

The limitation discussed above indicates the need to develop a model that
explains the purposes of status-functions belonging to institutional reality.
Aguilar et al. [29] corroborate this conclusion by stating that institutions have
not yet considered how to help agents in decision-making, helping them to
achieve their own goals. The modeling of purposes of status-functions, described
in the next section, is a step to fill this open gap.

3 The Purpose of Status-Functions

Inspired by Searle’s Theory (cf. Sect. 2.1), this section describes a model to
specify the purposes associated with the status-functions in artificial institu-
tions. The focus is on the main concepts and their relations. The mathematical
formalization of the model described below can be found in [12].

Fig. 2. Overview of the model.

The essential elements of the model used in this work are agents, goals, insti-
tutions, and purposes, depicted in the Fig. 2. Agents are autonomous entities
that can interact within a dynamic environment composed of non-autonomous
elements to achieve their goals [39]. The literature presents several defini-
tions of goal that are different but complementary to each other (see more
in [3,21,22,24,27,38]). In this work, goals are states of the environment that
agents aim to achieve. Agents can perform actions that trigger events in the
MAS. States are formed by one or more properties that describe the character-
istics of the system at some point of its execution [8].

Institutions provide the social interpretation of the environmental elements
of the MAS as usually proposed in the literature. This occurs through the inter-
pretation of constitutive rules that assign status to environmental elements, as
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described in Sect. 2. It is beyond the scope of this paper to propose a model of
artificial institutions. Instead, it considers this general notion of the institution
as the entity that constitutes status-functions, adopted by several models in the
field of MAS.

While agents and institutions are known concepts, purposes are introduced
in the proposed model. The functions associated with status-functions can sat-
isfy the practical interests of agents [32, p.20]. From the institution’s perspective,
we call these interests as Purposes. From the agents’ perspective, these interests
are their goals. Then, we claim that (i) goals match with the purposes of status-
functions and (ii) goals and purposes point to environmental states related to the
status-functions. For example, when an agent performs an action that consti-
tutes payment, this makes possible the execution of other intermediate actions
that bring the system to states such as hold a book (i.e., the agent goal). The
intermediate actions (e.g., deliver the book to the agent who made the payment)
between the constitution of the status-functions and the environmental states
being reached are ignored in our proposal, since we consider that the agent is
not interested in these intermediate steps.

Shortly, this model provides two relationships: (i) between purposes and
status-functions and (ii) between purposes and the goals of the agents. Thus,
if (i) there is a constitutive rule specifying which action constitutes a status-
function, (ii) there is a purpose associated with that status-functions, and (iii)
an agent has a goal that matches with the states pointed to by the purpose,
then (iv) it is explicit how the agent should act to achieve its goal. In the pre-
vious example, the programmer can use these two relations in the agent code
to program two queries: (i) a query to find the purposes that point to states
that match the agent goals and (ii) a query to find out which status-function is
associated with the found purposes. Thus, for example, the agent can find that
the purpose of books trade points to the hold a book state which matches the
goal and that the purpose of books trade is associated with the payment status-
function. Therefore, if the agent constitutes payment, it achieves its goal in this
system.

3.1 Ontology of the Model

We specify the proposed model in an OWL 2 ontology (see Fig. 3). The three
main classes of the model are Status-Function, Purpose and State. The first
represents status-functions that may exist in the institution. For example, the
assertion payment ∈ Status-Function indicates an individual identified by pay-
ment that belongs to the Status-Function class. The second class (Purpose)
represents the purposes that may come to exist in the system if the constitution
of the status-function is performed. These purposes represent a social combina-
tion that expresses the interests of agents through the states that are pointed
out from the purposes. For example, books trade is an individual of class Purpose
that represents a social combination of consequences that may exist in the system
after the constitution of a status function that matches the interests of agents.
The third class (State) represents states that may take effect in the system after
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the constitution of status-functions is performed. For example, holdAbook is an
individual of class state that represents a potential state that may take effect
in the system. Furthermore, to add new purposes to the system, it is enough to
create new individuals to represent them. In this way, the taxonomy of classes
and relations are reused. If necessary, the institution’s ontology can be related
to the ontology of the application domain.

Fig. 3. Ontology for the model.

The relations isConsequenceOf and isPurposeOf (shown in Fig. 3) are the
inverse of the relations hasConsequence and hasPurpose respectively. These rela-
tionships are necessary when someone wants to find out the status-functions asso-
ciated with a particular state (i.e., someone does not know the status-function
name, but someone already knows the state). For example, if one wants the hold-
Abook state, through the relations, one can find out the purpose that points to
that state (i.e., books trade) and the status-function associated with the purpose
(i.e., payment). The model allows us to explicitly define the states pointed to by
purposes and the relationships between these purposes and the status-functions.
At this point, it is important to make it clear that the choice to implement the
model through an ontology is a design decision aiming at the reuse of existing
ontologies. However, the model can be implemented in any other data structure
that makes it possible to specify states, purposes and status-functions.

4 Implementing a MAS with and Without Purpose

This section describes the advances provided by the proposed model in the design
of open MAS. To this end, consider an open MAS where the agents Bob, Alice,
François, and João aim to “hold a book”. However, the agents are coded by
different programmers and therefore have different plans composed of different
actions to achieve their goals.

The example is implemented through the components depicted in Fig. 4.
Agents are programmed in Jason [4] and the environment in CArtAgO [26]. A
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CArtAgO artifact encloses specific APIs and provides actions for the agents to
act. For the artificial institution, we use an implementation of the Situated Arti-
ficial Institution (SAI) model [13]. It provides means to specify status-functions
and constitutive rules and manage the constitution process. The purpose model
is implemented through an ontology encapsulated in a CArtAgO artifact which
is accessible to the agents. The query and persistence of data in the ontology are
enabled by the MasOntology2, a set of tools developed in CArtAgO to interact
with ontologies3

Fig. 4. Component diagram with the systems used to compose the example.

This section is organized as follows: Subsect. 4.1 describes the limitations of
not using the model from the perspective of the agents. Subsection 4.2 shows
how the model overcomes the limitations described in the previous section. The
Subsect. 4.3 describes the limitations of not using the model from the institu-
tion’s perspective. Finally, the Subsect. 4.4 discusses the advantages that the
model offers when used from an institutional perspective.

4.1 Limitations of a MAS Without a Purpose Model—Agent
Perspective

This section considers a scenario where all agents described in the introduction
are located in a bookstore. The Listings 1.1 to 1.4 depict the agents program.
Moreover, this system is instrumented with an institution that contains a con-
stitutive rule stating that the concrete action transfer count-as payment. Such a
system could include other status-functions and constitutive rules , but, for sim-
plicity, we focus only on this case to illustrate the main features of the proposed
model (cf. Sect. 3).

1 !holdBook. // Bob’s code

2

3 +! holdBook

4 <- ?constitutive_rule(Action ,payment ,_,_);

5 Action.

Listing 1.1. Plan of the agent Bob

2 https://github.com/smart-pucrs/MasOntology.
3 An initial implementation of this platform can be found in https://github.com/

rafhaelrc/psf model.

https://github.com/rafhaelrc/psf_model
https://github.com/rafhaelrc/psf_model
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1 !holdBook. // Alice ’s code

2

3 +! holdBook

4 <- ?constitutive_rule(Action ,afford ,_,_);

5 Action.

Listing 1.2. Plan of the agent Alice

1 !holdBook. // Francois ’ code

2

3 +! holdBook

4 <- ?constitutive_rule(Action ,repay ,_,_);

5 Action.

Listing 1.3. Plan of the agent François

1 !holdBook. // Joao’s code

2

3 +! holdBook

4 <- ?constitutive_rule(Action ,remit ,_,_);

5 Action.

Listing 1.4. Plan of the agent João

The main limitation is the agents may not exploit the constitution of status-
functions to achieve goals that match the environmental consequences of such a
constitution. For example, consider the fragment in Listing 1.1. This fragment
describes Bob’s goal (i.e., holdBook, in line 1) and the plan to reach its goal (lines
3–5). When executing the plan, Bob consults the institutional specification (line
4) to find out what concrete action might constitute payment, and in line 5, it
executes that action. Bob is coded to achieve its goal by constituting the status-
function payment. However, the problem occurs when other agents are coded
to achieve their goals through the constitution of status-functions other than
payment (e.g., afford, repay, and remit). For example, consider fragment in
Listing 1.2. This fragment describes Alice’s goal (i.e., holdBook, in line 1) and
the plan to reach its goal (lines 3–5). The way of execution is similar to Bob’s
code. However, there is no constitutive rule stating that a given concrete action
count-as afford, and thus Alice cannot achieve its goal through this plan.

This problem can be summarized in the fact that the actions instrumentalized
in the plans of Alice, François and João are not foreseen in the institutional
specification. This is because the agents are coded to act considering the action or
its constitution itself and not the effects that the constitution of status-functions
can bring to the system. If the status-functions used in the agent’s plans (e.g.
afford, repay and remit) are different from the status-functions described in
the institutional specification, agents cannot resolve which are the appropriate
actions to perform.

The agents could overcome the aforementioned limitation if they could choose
the status-functions to constitute based on the effects that their constitution
produces in the environment. However, without an explicit representation of
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purposes, this might not be possible. The agents may not be able to exploit the
constitution. For example, the constitutive rule transfer count-as payment does
not make it explicit that the consequence of constitution of the status-function
payment can lead to a state of the world where the agents have achieved their
goals. Moreover, if new status-functions produce similar effects in the environ-
ment when constituted, the agent may have difficulties in using them to satisfy
its goals. As they are currently conceived, institutions do not provide instru-
ments for agents to reason about the consequences of actions that affect the
institution and, therefore, conclude which actions satisfy their goals.

4.2 Advantages of Purpose—Agent Perspective

To illustrate how the proposed model solves the limitations from the agents’ per-
spective, consider again the example involving the agents Bob, Alice, François,
and João, that keep their goals of holding a book. However, the purposes related
to the status-function payment are now explicit (i.e., the model illustrated in
Fig. 3 is available for the agents to query).

All the agents can act in the same way to achieve their goals, according to
the code depicted in Listing 1.5. At this point it is important to be clear that the
actions from lines 2 to 4 are available by the institutional infrastructures of the
system in which the agents interact. The institution has a CArtAgO artifact that
allows the agents to access information related to institutional specification and
purposes. The system also has a CARtAgO artifact developed by us that allows
the agent to perform the concrete action provided for in the constitutive rule of
the institutional specification. Since the agents have access to the institutional
and constitutive specifications of the system, the programmer of agents can
implement them with a generic plan that helps them to achieve their goal on
the system. Thus, the code of both agents can be the same.

The agent code runs as follows: In line 2, the agent queries the purpose that
points to the desired state. The name of the found purpose is books trade. In
line 3, the agent queries which status-function is associated with the books trade
purpose. The status-functions name is payment. In line 4, the agent queries which
concrete action can constitute the payment status-function. The action name is
transfer. Finally, the agent performs this action.

1 ...

2 getPurposesOfState(holdAbook ,NamePurposes);

3 getStatusFunctionsFromPurposes (NamePurposes ,

NameStatusFunction);

4 ?constitutive_rule(Action ,NameStatusFunction ,_,_);

5 Action.

Listing 1.5. Plan of the agents

We can notice the possibility of agents exploiting the constitution of status-
functions to achieve their goals that combine them with the environmental con-
sequences. By adding purposes related to status-functions, agents can reason
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about the purposes (i.e., the consequences) of carrying out actions that consti-
tute status-functions. From this, the agents can check which actions are aligned
with their social goals and, if performed, these actions can satisfy them. For
example, the status-functions payment has the purpose of books trade asso-
ciated. This purpose points to the holdABook state that matches the agents’
goal. From this, the agent can infer that the status-function payment can help
it achieves its goal. This solution allows the agent itself to check if its social goal
can be satisfied. This solution seems to be appropriate because it prevents the
agent from following unnecessary regulative rules (e.g., a regulative rule stating
that it is obligated to make a payment) or performing actions it does not know
the consequences (e.g., respect the regulative rule and make the payment, how-
ever, payment does not produce the practical effect in the environment that is
consistent with it goal of holding a book).

4.3 Limitations of a MAS Without Purpose—Institution
Perspective

Consider that agents Bob, Alice, François and João have the same goal of hold-
ing a book and can enter different systems, that are a bookstore, a library,
a friend’s house, and a hostel house. These systems provide, respectively, the
environmental actions transfer, signLoan, receiveABook, and putBookOnShelf.
Each system has its own institution that assigns institutional meaning to these
actions. To help the agents to act in the system, each institution includes the
status-functions known by the different agents. The institutional specifications
are shown in Listings 1.6 to 1.9. The first institution contains a constitutive rule
stating that the action transfer count-as payment, rent, donation and replace.
The second institution contains a constitutive rule stating that signing a loan
count-as payment, rent, donation and replace. The third institution contains a
constitutive rule stating that receiving the book from a friend count-as payment,
rent, donation and replace. Finally, the fourth institution contains a constitutive
rule stating that putting a book on a shelf count-as payment, rent, donation and
replace.

status_functions : payment , rent , donation , replace.

Constitutive_rules: 1: transfer count -as payment. 2: transfer

count -as rent. 3: transfer count -as donation. 4: transfer

count -as

replace.

Listing 1.6. Bookstore Institutional Specification

status_functions : payment , rent , donation , replace.

Constitutive_rules: 1: signLoan count -as payment. 2: signLoan
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count -as rent. 3: signLoan count -as donation. 4: signLoan

count -as

replace.

Listing 1.7. Library Institutional Specification

status_functions : payment , rent , donation , replace.

Constitutive_rules: 1: receiveABook count -as payment. 2:

receiveABook count -as rent. 3: receiveABook count -as donation

. 4:

receiveABook count -as replace.

Listing 1.8. Friend’s House Institutional Specification

status_functions : payment , rent , donation , replace.

Constitutive_rules: 1: putBookOnShelf count -as payment. 2:

putBookOnShelf count -as rent. 3: putBookOnShelf count -as

donation.

4: putBookOnShelf count -as replace.

Listing 1.9. Hostel House Institutional Specification

The problem from an institutional perspective is that the vocabulary used
in specifying agents needs to be compatible with the vocabulary used in spec-
ifying institutions. Four constitutive rules are required in the example, one for
each potential incoming agent. For every new different agent, a new constitu-
tive rule has to be added in each institution to keep it compatible with the
agent. The institutional specification is thus quite dependent on how agents are
programmed. The institutional developer must be worried about the agents’
internals instead of specifying a good institution (independent of the incoming
agents). As it is currently conceived, the institution is not open enough to sup-
port the performance of different agents designed with different (but similar)
plans and goals.

4.4 Advantages of Purpose—Institution Perspective

Consider again the example involving the agents Bob, Alice, François, and João
that still have the same goal but can move through four systems containing four
different institutional specifications. Each institution contains its own institu-
tional specification that is extended by adding purposes related to the status-
functions. The institutional and purpose specification for the bookstore scenario
is depicted in Listing 1.10. The institutional and purpose specification for the
library scenario is depicted in Listing 1.11. The institutional and purpose spec-
ification for the friend’s house scenario is depicted in Listing 1.12. Finally, the
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institutional and purpose specification for the hostel scenario is depicted in List-
ing 1.13. These purposes point to states of the world that match the agents’
goals.

status_functions : payment payment has purpose of: holdABook

Constitutive_rules: 1: transfer count -as payment.

Listing 1.10. Bookstore Institutional and Purpose Specification

status_functions : rent. rent has purpose of: holdAbook

Constitutive_rules: 1: signLoan count -as rent.

Listing 1.11. Library Institutional and Purpose Specification

status_functions : donation. donation has purpose of:

holdAbook

Constitutive_rules: 1: receiveABook count -as donation.

Listing 1.12. Friend’s House Institutional and Purpose Specification

status_functions : replace. replace has purpose of: holdAbook

Constitutive_rules: 1: putBookOnShelf count -as replace.

Listing 1.13. Hostel House Institutional and Purpose Specification

We can notice that the institutional specification, particularly the constitu-
tive rules, is not taylored for the different possible incoming agents. The compat-
ibility between the agents’ vocabulary and the institution is no longer handled by
the constitutive rules. The link between the status-functions and agents’ goals is
done in a new space conceived adequately for that. If a new agent is considered
a participant of the institution, only this space has to be adapted. The consti-
tution is kept unchanged. For example, the bookstore specification contains an
associated space that describe the purpose of the payment status-function. In
this case, payment is related to the purpose of books trade that points to states
that match with the goals of Bob, Alice, François and João.

5 Results and Discussions

The problems motivating this paper are (i) agents not exploiting the environ-
mental consequences of the constitution of status-functions to achieve their goals
and (ii) the incompatibility between the vocabulary used while specifying the
agents and the institution. These problems are partially solved by computational
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models that implement artificial institutions. However, these models do not rep-
resent the purpose of status-functions. Agents have to be hard-coded to know
which status-functions can be useful for them to achieve their social goals, and
institutions must be recoded to include new agents specified by different par-
ties. Considering these problems, we propose a model to express the purposes
associated with the status-functions that compose the artificial institutions. The
conception of our model is an adaptation, from a particular point of view, of
Searle’s theory [31,32] which claims that the purposes are the practical inter-
ests of the individuals that can be satisfied by the constitution of the status-
functions (cf. Sect. 2.1). In this computational adaptation of this conception,
purposes are associated with status-functions in the institutional specification,
i.e., they are external to the agents and explicit in the institution. Even being
external, they are connected to the goals of the agents. This connection between
status-functions and goals through the purposes captures the Searle’s conception
of institutional elements (status-functions in this case) that satisfy the practical
interests (goals, in this case) of the agents.

There are some advantages of such a conception. The first one is the flexi-
bility of the agents to act in different institutions, even without knowing their
status-functions. The model presented in this work allows that agents’ plans
can be specified considering the purposes related to the status-functions rather
than the status nomenclature. The advantages are (a) the agents can reason
about the consequences of the constitution of the status-functions and adapt
to different scenarios, and (b) by reasoning about the consequences of the con-
stitution of the status-functions, an agent can perceive that these consequences
are similar to its interests and therefore useful to reach its goals. The agent’s
capability to reason about the consequences of the constitution of the status-
functions and adapt to different scenarios is an important advance especially
in open systems [2,40]. The agent’s understanding about what makes its social
goal satisfied is also an important advance in its autonomy [29]. In this case, the
agent can reason about the actions in the plans and the regulative rules that
govern the system. In both cases, the agent has more autonomy and flexibility
while deciding whether a particular action will help it reach its social goal. The
second advantage is related to the institution’s flexibility as being prepared to
receive different agents designed by different developers. The model allows the
explicit declaration of a link between status-functions and purposes. The insti-
tution requires that new incoming agents know only their goals, the particular
status-functions and actions managed by the institution can be discovered at
run-time.

According to [14], humans usually have a representation (i) internal of the
social reality, i.e., the individuals do not necessarily reason in terms of status-
functions, norms, purposes, etc. and (ii) implicit, as it is built on top of people’s
mental states (that believe, for instance, that a certain man is the king). In the
proposed model, purposes are (i) explicit, as it is properly specified through insti-
tutional concepts and (ii) external, as it is persisted outside the agent’s mind.
Dignum, et.al. [15] discuss the different approaches for modeling and imple-
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menting organizational concepts, showing the disadvantages of leaving concepts
internal and implicit and the benefits of making them external and explicit.
Although the work discusses these issues from an organizational point of view,
the observed advantages can also be applied to institutions. Such conception is
in agreement with some authors that point that institutions can (or even should)
be used for reasons that are beyond the normative ones [16,23,25,28,29,33,34].

As future work, we plan to explore additional theoretical aspects related
to the proposal, such as (i) investigations about how other proposed institu-
tional abstractions fit on the model, (ii) the verification of the consistency among
status-functions’ purposes and agents’ social goals, and (iii) check if the func-
tions related to status must be further detailed. We plan to also address more
practical points such as (i) the modeling of a status-functions’ purposes based on
a real scenario, (ii) the implementation of the proposal in a computer system and
(iii) its integration in an computational model that implements the constitution
of status-functions in an MAS platform.
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20. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial insti-
tutions. Auton. Agent. Multi-Agent Syst. 14(2), 121–142 (2007). https://doi.org/
10.1007/s10458-006-0017-8

21. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent program-
ming with declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44631-1 16
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tiago, I.: Towards next generation coordination infrastructures. Knowledge Engi-
neering Review, 2015, vol. 30(4), p. 1–19 (2015)

31. Searle, J.: Making the social world: The structure of human civilization. Oxford
University Press (2010)

32. Searle, J.R.: The construction of social reality. Simon and Schuster (1995)
33. Telang, P.R., Singh, M.P., Yorke-Smith, N.: A coupled operational semantics for

goals and commitments. J. Artif. Intell. Res. 65, 31–85 (2019)
34. Tomic, S., Pecora, F., Saffiotti, A.: Norms, Institutions, and Robots 14(8), 1–14

(2018). https://arxiv.org/abs/1807.11456
35. Vázquez-Salceda, J., Aldewereld, H., Grossi, D., Dignum, F.: From human reg-

ulations to regulated software agents’ behavior. Artif. Intell. Law 16(1), 73–87
(2008)
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Abstract. Social norms characterize collective and acceptable group conducts
in human society. Furthermore, some social norms emerge from interactions
of agents or humans. To achieve agent autonomy and make norm satisfaction
explainable, we include emotions into the normative reasoning process, which
evaluates whether to comply or violate a norm. Specifically, before selecting an
action to execute, an agent observes the environment and infers the state and con-
sequences with its internal states after norm satisfaction or violation of a social
norm. Both norm satisfaction and violation provoke further emotions, and the
subsequent emotions affect norm enforcement. This paper investigates how mod-
eling emotions affect the emergence and robustness of social norms via social
simulation experiments. We find that an ability in agents to consider emotional
responses to the outcomes of norm satisfaction and violation (1) promotes norm
compliance; and (2) improves societal welfare.

1 Introduction

Humans, in daily life, face many choices at many moments, and each selection brings
positive and negative payoffs. In psychology, decision-making [33] is a cognitive pro-
cess that selects a belief or a series of actions based on values, preferences, and beliefs to
achieve specific goals. Emotions, the responses to internal or external events or objects,
can involve the decision-making process and provide extra information in communi-
cation [17,32]. Social norms describe societal principles between agents in a multia-
gent system. While social norms regulate behaviors in society [15,30,35], humans and
agents have the capacity to deviate from norms in certain contexts. For instance, people
shake hands normally but deviate from this social norm during a pandemic. Chopra and
Singh [8] describe how social protocols rely on a foundation of norms though they do
not discuss how the appropriate norms emerge.

An agent that models the emotions of its users and other humans can potentially
behave in a more realistic and trustworthy manner. The decision-making process for
humans or agents involves evaluating possible consequences of available actions and
choosing the action that maximizes the expected utility [11]. Herbert Simon, one of the
founders of AI, emphasized that general thinking and problem-solving must incorporate
the influence of emotions [34]. Without considering emotions or other affective charac-
teristics, such as personality or mood, some compliance seems irrational [4]. Humans’
c© Springer Nature Switzerland AG 2022
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compliance shows hints on rational planning over their objectives [17]. Including emo-
tion or personality in normative reasoning makes these compliance behaviors explain-
able. Norms either are defined in a top-down manner or emerge in a bottom-up man-
ner [25,30]. Works on norms include norm emergence based on the prior outcome of
norms, automated run-time revision of sanctions [10], or considering various aspects
during reasoning [1,2]. However, sanctions in the real world are often subtle instead of
harsh punishments. For instance, sanctions could be trust updates or emotional expres-
sion and might change one’s behavior [6,27]. Kalia et al. [16] considered norm outcome
with respect to emotions and trust and goals. Modeling and reasoning about emotions
and other affective characteristics in an agent then become important in decision making
and would help the agent enforce and internalize norms.

Accordingly, we propose Noe, an agent architecture that integrates decision-making
with normative reasoning and emotions. We investigate the following research question.

RQemotion. How does modeling the emotional responses of agents to the outcomes of
interactions affect norm emergence and social welfare in an agent society?

To address RQemotion, we refine the abstract normative emotional agent architec-
ture [4] and investigate the interplay of norms and emotions. We propose a framework
Noe based on BDI architecture [29], norm life-cycle [4,12,30], and emotion life-cycle
[3, pp. 62–64] [21]. To evaluate Noe, we design a simulation experiment with vari-
ous agent societies. We investigate how norms emerge and how emotions in normative
agents influence social welfare.

To make the problem tractable, we apply one social norm in our simulation and sim-
plify the emotional expression to reduce the complexity. Specifically, our Noe agents
process emotions by appraising norm outcomes. For the emotion model, we adopt the
OCC model of emotions [28] in which we consider both emotional valence and inten-
sity and assume violation of norms yields negative emotions.

Organization. The rest of the paper is structured as follows. Section 2 discusses the rel-
evant related works. Section 3 describes Noe, including the symbolic representation and
the decision-making in Noe. Section 4 details the simulation experiments we conduct to
evaluate Noe and describes the experimental results. Section 5 presents the conclusions
and the future directions.

2 Related Works

Ortony et al. [28] model emotions based on events, action, and objects. Marsella and
Gratch [21] proposed a computational model of emotion to model appraisal in percep-
tual, cognitive, and behavioral processes. Moerland et al. [24] surveyed emotions in
relation to reinforcement learning. Keltner and Haidt [17] differentiate the functional
approaches and research of emotions by four-level analysis: individual, dyadic, groups,
and cultural. Briefly, emotions provide some information for agents or people to coor-
dinate social interactions. We take inspiration from these works.

Savarimuthu and Cranefield [30] proposed a life-cycles model for norms and dis-
cussed varied mechanisms of norm study. Broersen et al. [7] introduced the so-called
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Beliefs-Obligations-Intentions-Desires (BOID) architecture on top of the Beliefs-
Intentions-Desires (BDI) architecture [29], which further include obligation and con-
flict resolution. Lima et al. [18] developed Gavel, an adaptive sanctioning enforcement
framework, to choose appropriate sanctions based on different contexts. However, these
works do not consider emotions in the decision-making process.

Argente et al. [4] propose an abstract normative emotional agent architecture, which
combines emotion model, normative model, and Belief-Desire-Intention (BDI) archi-
tecture. Argente et al. defined four types of relationships between emotions and norms:
(1) emotion in the process of normative reasoning, (2) emotion generation with norm
satisfaction or violation, (3) emotions as a way to enforce norms, (4) anticipation of
emotions promotes internalization and compliance of social norms. Yet, Argente et al.
do not validate the interplay between emotions and norms with their proposed architec-
ture.

Bourgais et al. [6] present an agent architecture that integrates cognition, emotions,
emotion contagion, personality, norms, and social relations to simulate humans and
ensure explainable behaviors. However, emotions are predefined and not generated via
appraisal in this work.

Von Scheve et al. [31] consider emotion generation with norm satisfaction or vio-
lation. Specifically, an observer agent perceives the transgression of a norm of another,
its strong negative emotions (e.g., contempt, disdain, detestation, or disgust) constitute
negative sanctioning of the violator. The negative sanctioning then leads to negative
emotions (e.g., shame, guilt, or embarrassment) in the violator. Besides, compliance
with the social norms can stem from the fear of emotional-driven sanctions, which
would lead to negative emotions in the violator. Such fear enforces social norms. Yet,
emotions are not part of the decision-making process in this work.

3 Noe

We now describe the architecture, norm formal model, and decision-making.

3.1 Architecture

Noe integrates the BDI architecture [29] with a normative model [4,12,30] and an
emotional model [3,21]. A Noe agent assesses the environment, including other agents’
expressed emotions, its cognitive mental states, and infer possible outcomes to make a
decision. Figure 1 shows the three components of Noe.

The normative component of Noe includes the following processes:

– Identification: the agent recognize norms from its norm base based on its beliefs
– Instantiation: activate norms related to the agent
– Normative reasoning process: the reasoning process makes decisions based on the
beliefs, current intention, self-directed emotions, other-directed emotions received
from others, active norms, and how the norm satisfaction or violation influences the
world and itself The Noe agents then update the intention based on the results of
normative reasoning
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Fig. 1. Noe architecture, representing and reasoning over beliefs, desires, intentions, emotions,
and norms.

– Norm fulfillment process: check if a norm has been fulfilled or violated based on
the selected action. The compliance or violation of a norm will then trigger an elicit
emotion event that will be appraised at the emotion component.

The BDI component includes the following parts:

– Beliefs: form beliefs based on perceptions
– Desires: generate desires based on the beliefs
– Intention: the highest priority of desires to achieve based on the beliefs
– Action: select action based on the current intention, emotions, possible outcomes,
and the evaluation of violating or complying with norms, if any
The beliefs, desires, and intentions are mental states of Noe agents.

The emotional component includes the following processes:

– Appraisal: calculate the appraisal value based on the beliefs, desires, and norm satis-
faction or norm violation. In this work, we consider only norm satisfaction or norm
violation

– Emotion: generate emotion based on the appraisal values [21].

Figure 2 illustrates the interactions between agents in our simulation scenario.
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Fig. 2. The interaction between Noe agents.

3.2 Norm Formal Model

Social norms describe the interactions between agents in a multiagent system.
We adopt Singh’s [35] representation, where a social norm is formalized as
Norm(subject, object, antecedent, consequent). In this representation, the subject and
object represent agents, and the antecedent and consequent define conditions under
which the norm is activated or satisfied, respectively. This representation describes a
norm activated by the subject towards the object when the antecedent holds, and the
consequent indicates if the norm was satisfied or violated.

Following Singh [35], we consider three types of norms in Noe.

– Commitment (C): the subject commits to the object to bring out the consequence
if the antecedent holds. Consider Alice and Bob are queuing up in a grocery store.
Alice and Bob commit to keeping social distance during the pandemic, represented
as C(Alice,Bob, during = pandemic, social distance).

– Prohibition (P): the object prohibits the subject from the consequence if the
antecedent holds. Caleb, the grocery store manager, prohibits Bob from jumping
the queue while lining up in that store, represented as P (Bob,Caleb, when =
line up; at = grocery store, jump).

– Sanction (S): same as commitment or prohibition, yet the consequence would be
the sanctions. Sanctions could be positive, negative, or neutral reactions to any norm
satisfaction or violation [27]. If Bob breaks the queue, he receives negative sanctions
from Alice, represented as S(Bob,Alice, jump, negative sanctions). Negative sanc-
tions could be physical actions, e.g., scolding someone, or emotional expression,
e.g., expressions of disdain, annoyance, or disgust.

To simulate the norm emergence and enforcement in human society, we
include emotions into the decision-making process since, by nature, humans do not
always act rationally in terms of utility theory. Here we formalize emotions with
Ei(target, intensity, decay) indicating agent ai has emotion e toward the target with
intensity and decay value. An example of the prohibition case would be, Bob would not
jump the queue if Alice is angry, represented as P (Bob,Alice,Bob � Alice ∧ EAlice =
angry, jump).
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We model the emotional response of agents with triggered emotions from
norm satisfaction, or violation [4]. Here we represent the elicited emotions with
Elemname(Aexpect, Areal, Em1, Em2)|Em1, Em2 ∈ E;Aexpect, Areal ∈ A where
A is a set of actions. E is a set of emotions, and Em1 and Em2 are the emotions
triggered by norm satisfaction and violation accordingly. If the Aexpect is equal to the
Areal, a norm has been fulfilled, and Em1 was elicited. Ap(beliefs, desires,Elem)
represents the appraisal function.

3.3 Decision-Making

Schwarz [32] addresses the influence of moods and emotions at decision making and
discusses the interplay of emotion, cognition, and decision making. Specifically, the
aspects include pre-decision affect, post-decision affect, anticipated affect, and memo-
ries of past affect. In our model, we include the pre-decision affect into the decision-
making process. With pre-decision affect, people recall information frommemories that
match their current affect [32]. For instance, people in a sad emotion or interacting with
hostile people tend to overestimate adverse outcomes and events.

In our model, emotions serve as mental objects and an approach to sanctioning. We
consider emotions as intrinsic rewards from agents’ internal state in contrast to physical
rewards from the environment. We adopt the OCC model of emotions [28], in which
we consider emotional valence and intensity. We formulate emotions with simple val-
ues where positive values indicate positive emotions and larger values indicate higher
intensity. A mood is a general feeling and not a response to a specific event or stimulus
compared to emotions. Therefore, we consider emotions but not mood. Noe agents’
appraisal function considers norm satisfaction and violation only. The agents are aware
of other agents’ expressed emotions in the same place. In this work, we assume that
agents express true and honest emotions and can correctly perceive the expressed emo-
tions. In other words, felt emotions are equal to expressed emotions. Another assump-
tion is that emotions are consistent with the notions of rational behavior.

Algorithm 1 displays the decision loop of our model. At the beginning of the sim-
ulation, all agents are initialized with certain desires, and during the run, an intention
would be generated by prioritizing desires with the agent’s beliefs. When choosing the
next move with line 5 in Algorithm 1, the agent chooses the one with maximum utility
from all available actions. Algorithm 2 details the action selection. The decision takes
the agent’s beliefs, current intention, and possible consequences into accounts. While
norms are activated with the beliefs, the agent would further consider emotions and
cost and possible consequences with norms at line 9 in Algorithm 2. For instance, if
people violate some social norms, they may be isolated from society. Regarding the
influence of emotions, people may overestimate the negative outcomes when they are
in the negative emotion and tend to comply with the norms.

4 Evaluation

We evaluate Noe via a line-up environment where agents form queues to receive ser-
vice. We detail the environment in Sect. 4.1.
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Algorithm 1: Decision loop of a Noe agent

1 Initialize one agent with its desires D;
2 for t=1,T do
3 Observe the environment (including the expressed emotions from others Earound)

and form beliefs bt;
4 Generate intention I based on bt and D;
5 at = ActionSelection(bt, I, D);
6 Execute action at;
7 Elicit self-directed emotions Eself from agent itself based on if action at fulfills a

norm;
8 Self-sanction with Eself ;
9 Observe the environment (including the performed actions at other of other agents)

and form beliefs bt+1;
10 Elicit other-directed emotions Eother for observer agents based on if action at other

fulfills a norm;
11 Sanction others with Eother;
12 end

Algorithm 2: Action selection
Input: beliefs bt, intention I, desires D
Output: Action at

1 Function Action Selection:
2 Earound ⊂ bt;
3 for each a in ACTIONS(bt) do
4 Activate norms N with beliefs bt and a;
5 if N = ∅ then
6 at = MAXa(RESULT(bt, intention, a))
7 else
8 at = MAXa(RESULT(bt, intention, a, N) × amplifier(Earound) )
9 end

10 end
11 return at

12 return

4.1 Line-Up Environment

Figure 3 shows the line-up environment. We build this line-up environment using Mesa
[22], a Python-based framework for building, analyzing, and visualizing agent-based
models.

The line-up environment includes two shared locations—home and grocery stores.
The agents move between home and grocery stores to get food. We consider one social
norm in the line-up environment: agents are expected to line up to enter the grocery
store. To simulate real human reactions to norm violations, we refer to a social psy-
chology experiment [23]. In the line-up environment, we model defensive reactions of
people in the queue as negative emotions toward those who jump the queue by barging
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Fig. 3. Simulation details. Agents move between their homes and the grocery store. The store has
a capacity limit of eight customers at one time. As a result, other agents must line up outside the
store to get service.

in ahead of someone already in the queue. Conversely, people show positive emotions
toward those who stay in the queue.

We initialize the agents with the following parameter values:

– Health (Integer value from 0–100): When the health value reaches zero, the agent is
marked as deceased and unable to act. The health value decreases by 1 unit at each
step.

– Deceased (Boolean: True or False): set as True when an agent runs out of health.
– Emotion (Integer value): simplified with numerical values where positive values
indicate positive emotions and negative indicate negative emotions. The emotions
come along with a duration. Default at 0.

– Number of food packets owned (Integer value from 0–15): once obtained food from
the stores, agents would be able to restore its health value via consuming food any-
where.

– Food expiration day (Integer value from 0–15): once the agent gets food packets, we
update the expiration day with 15. The expiration day decreases by 1 unit at each
step. Food expires once the expiration day reaches 0. Default at 0.

– Beliefs: the perceived and processed information from the world, including other
agents’ expressed emotions.

– Desires: desired states, including have food and wandering.
– Intention: the highest priority of desires to achieve at a specific time. When the
agent’s health is lower than the threshold, 80% of the health, the agent sets its inten-
tion as get food; otherwise, the agent sets its intention as wandering.

When an agent runs low on stock, it has a higher probability of moving to a grocery
store. The grocery store can provide food packets to eight agents in one time step. While
waiting in line to get food, the agent could either stay in the line or jump ahead in the
line to get food in less time. Jumping the line may increase other agents’ delay in get-
ting food packets. Those who witness the violation would then cast negative emotions,
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further interpreted as anger or disdain, triggered by that behavior. To simplify the sim-
ulation, we presume the anticipated affects [32] with: (1) receiving negative emotions
triggers negative self-directed emotions such as shame and guilt; (2) complying with
norms leads to positive or neutral emotions; (3) violating norms leads to negative or
neutral emotions. The intensity of emotions triggered each time is fixed, but the values
of emotions can add up. Each triggered emotion lasts 2 steps. At each step, the dura-
tion and intensity of emotion decrease by 1 as decay. A simple assumption here is that
people in a bad mood would trigger stronger emotions in response to a non-ideal state.
Note that at the beginning of the simulation, we initialize the agent society with health
in normal distribution to avoid all agents having the same intention at the same time.

4.2 Agent Types

To answer our research question and evaluate Noe, we define three agent societies as
baselines. We describe the agents societies below:

Obedient society. Agents in an obedient society always follow norms.
Anarchy society. Agents in an anarchy society jump lines when they cannot get food.
Sanctioning society.Agents in the sanctioning society jump lines considering the previ-

ous experience of satisfying or violating a norm. Agents sanction positively or neg-
atively based on norm satisfaction or violations directly and comply with enforced
norms.

Noe society.Agents in the Noe society jump lines considering the previous experiences
of satisfying or violating a norm, current emotional state of the other agents, cur-
rent self emotional state, and estimated outcome of satisfying or violating a norm.
Noe agents who observe norm satisfaction or violations would appraise the norm
outcomes and trigger emotions to sanction the actor agent.

Table 1 summarizes the characteristics of the agents in the four societies.

Table 1. Characteristics of the various agent societies.

Agent type Violation allowed Sanctioning Emotions involved

Obedient society ✘ ✘ ✘

Anarchy society ✔ ✘ ✘

Sanctioning society ✔ ✔ ✘

Noe society ✔ ✔ ✔

4.3 Hypotheses and Metrics

To address our research question RQemotion on emotions and norm emergence, we
propose three hypotheses:
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H1 (Norm satisfaction): Norm satisfaction in Noe agent society is higher compared to
the baseline agent societies.

H2 (Social welfare): Noe agent society yields better social welfare compared to the
baseline agent societies.

H3 (Social experience): Noe agent society yields a better social experience compared
to the baseline agent societies.

To evaluate H1 on norm satisfaction, we compute one metric, M1 (Cohesion): Per-
centage of norm satisfaction.

To evaluate H2 on social welfare, we compute two metrics: (1) M2 (Deceased):
Cumulative number of agents deceased; (2) M3 (Health): Average health of the agents.

To evaluate H3 on social experience, we compute one metric, M4 (Waiting time):
Average waiting time of agents in the queues.

To test the statistical significance of H1, H2, and H3, we conduct the independent
t-test and measure effect size with Glass’s Δ for unrelated societies [13,14]. We adopt
Cohen’s [9, pp. 24–27] descriptors to interpret effect size where above 0.2, 0.5, 0.8
indicate small, medium, and large.

4.4 Experimental Setup

We run each simulation with 400 agents and queue size 80 for 3,000 steps. We choose
a relatively small number of agents to reduce the simulation time while our results are
stable for a more significant number of agents. The simulation stabilizes at about 1,500
steps, but we keep extended simulation steps to have more promising results. Table 2
lists the payoffs applied in our simulation.

We present the results with a moving average of 100 steps. We choose this size of
running window to show the temporal behavior change in a small sequence of time.
With a larger size, the running window may alleviate the behavior change. To minimize
deviation from coincidence, we run each simulation with 10 iterations and compute the
mean values.

Table 2. Payoff table.

Component Type Reward

Deceased Extrinsic –500

Norm compliance & Positive emotion Intrinsic 1

Norm violation & Negative emotion Intrinsic –1

4.5 Experimental Results

In this section, we describe the simulation results comparing the three baselines and
Noe agents. Table 3 summarizes these results. Table 4 lists the value of Glass’s Δ and
p-values from the independent t-test.
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According to Table 3 and Table 4, we see that Noe generate better cohesion and
fewer deceased agents than baselines (p < 0.01; Glass’s Δ > 0.8). The null hypothesis
corresponding to H1 is rejected. Note that we do not consider the cohesion metric for the
obedient agent society here since agents in the obedient society are always compliant.
However, Noe also yields the worst social experience where the low waiting time is a
desirable state (p < 0.01; Glass’s Δ > 0.8).

Table 3. Comparing Noe agent society with baseline agent societies on various metrics.

Agent society Cohesion Deceased Health Waiting time

Obedient – 55.30 79.27 8.95

Anarchy 0.22 81.60 79.50 5.45

Sanctioning 0.88 169.30 86.26 2.55

Noe 0.99 54.00 79.00 8.95

Table 4. Statistical analysis.

Agent society Glass’s Δ p-value

Cohesion Deceased Waiting time Health Cohesion Deceased Waiting time Health

Obedient 0.19 0.65 0.01 0.18 0.32 <0.01 0.98 0.52

Anarchy 102.43 3.10 40.82 0.21 <0.01 <0.01 <0.01 0.46

Sanctioning 13.67 15.53 76.68 3.34 <0.01 <0.01 <0.01 8.45

Noe – – – – – – – –

H1 Norm Satisfaction. Figure 4 displays the cohesion, the percentage of norm sat-
isfaction, in the baseline agent societies and the Noe agent society. We find that the
percentage of norm satisfaction in the Noe agent society, average at 99% and p-value
< 0.01, is constantly higher than the sanctioning agent society, average at 88% and p-
value < 0.01 and Glass’s Δ > 0.8. The sanctioning agent society learns to comply with
the norm as time goes by. The Noe agent society does sanction as well. Yet, considering
emotions and the possible outcome makes Noe agent society enforce the norm faster
than the sanctioning agent society. Specifically, Noe agent society enforces the norm at
about 100 steps while sanctioning agent society at 1,500 steps.

H2 Social Welfare. Figure 5 compares the average number of deceased in the obedi-
ent, anarchy, sanctioning, and Noe agent societies. Refer to Fig. 4, sanctioning agent
society learns the norm via positive and negative sanctioning from norm satisfaction
and violation. However, the agents in that society do not consider the possible severe
consequences and cause compliant agents to die in the queue. When the number of
deceased reaches the threshold, the simulation stabilizes. Therefore, no more agent from
the sanctioning agent society dies after the threshold. On the contrary, Noe agent society
sanctions and considers possible outcomes of norm satisfaction and violation, therefore
learning the norm and avoiding unacceptable consequences.
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Fig. 4. Simulation result: average cohesion. Comparing average cohesion (M1) yielded by Noe
and baseline agent societies.

Fig. 5. Simulation result: average number of deceased. Comparing average number of deceased
(M2) in Noe and baseline agent societies.

Figure 6 compares the average health of the agents in the obedient, anarchy, sanc-
tioning, and Noe agent societies. The sanctioning agent society yields higher health
State, with a mean at 86.26, but at the expense of more deaths. The rest of the agents
then be able to remain in high health.

H3 Social Experience. Figure 7 compares the average waiting time the agents spend
in a queue at the grocery store in the obedient, anarchy, sanctioning, and Noe agent
societies. The Noe agent society learns the norm fast and remains the same waiting time
in the queue. However, some agents in the sanctioning agent society take advantage of
those who learn norms faster than themselves. Therefore, many agents die during the
learning process, and the simulation stabilizes. In Fig. 7, the obedient agent society
shares the same trend with Noe agent society since emotions enforce the line-up norm.
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Fig. 6. Simulation result: average health value. Comparing average health value (M3) in Noe and
baseline agent societies.

Fig. 7. Simulation result: average waiting time of agents in queues. Comparing average waiting
time (M4) in Noe and baseline agent societies.

Combining the results for H1 and H2 and H3, we note that while sanctioning
enforces norms, a combination of sanctioning and emotions enforce norms better.
Specifically, having emotions as amplifiers of outcomes yield higher norm satisfaction
compared to our baselines. The results also indicate that, first, sanctioning agents that
consider only norm violation or norm satisfaction may bring out worse social welfare
compared to Noe that considers both norms and their consequences. Second, although
Noe agents remain relatively high waiting time in the queues, the number of deceased
is lower than the baselines. Note that the sudden drop of deceased number or increase of
health value for sanctioning agents resulted from the stabilization of that society. Third,
Noe agents stay in positive emotions during the simulation while sanctioning agents
start from negative emotions and eventually achieve the expected behaviors.
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5 Discussion and Conclusion

We present an agent architecture inspired by the norm life-cycle [4], BDI architecture
[29], and emotion life-cycle [3,21] to investigate how emotions influence norm emer-
gence and social welfare. We evaluate the proposed architecture via simulation exper-
iments in an environment where agents queue up to receive service. Our simulations
consider two characteristics of an agent society: sanctioning and emotions that partici-
pate in action selection and arise from evaluating selected action. The experiments show
that incorporating emotions enables agents to cooperate better than those who do not.

In our agent architecture, we make an assumption that agents can recognize others’
emotions. However, we acknowledge that emotion recognition is a challenging task
[5]. Whereas recent works in AI have focused on emotion recognition through facial
expressions and emotion recognition using wearables, it is worth noting that there is no
agreement in modeling emotions in the psychology community [5,19,20].

Murukannaiah et al. [26] address many shortcomings of current approaches for AI
ethics, including taking the value preferences of an agent’s stakeholder and other agents’
users, learning value preferences by observing the responses of other agents’ users,
and value-based negotiation. Incorporating these aspects in Noe is an interesting future
direction.

As a future extension of current work, we plan to differentiate emotions in Noe
instead of modeling emotions with emotion valences to provide more information for
value preferences. We also consider including a mix of personalities in future research
to have different appraisal results. In this work, Noe agents are assumed to express true
and honest emotions. However, emotions can also serve as a tool to influence, persuade,
or deceive others in an adversarial context. It would be crucial to identify and model
these contradictions while humans are in the loop.
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Abstract. Norms represent behavioural aspects that are encouraged
by a social group of agents or the majority of agents in a system. Nor-
mative systems enable coordinating synthesised norms of heterogeneous
agents in complex multi-agent systems autonomously. In real applica-
tions, agents have multiple objectives that may contradict each other or
contradict the synthesised norms. Therefore, agents need a mechanism
to understand the impact of a suggested norm on their objectives and
decide whether or not to adopt it. To address these challenges, a utility-
based norm synthesis (UNS) model is proposed which allows the agents
to coordinate their behaviour while achieving their conflicting objectives.
UNS proposes a utility-based case-based reasoning technique, using case-
based reasoning for run-time norm synthesising in a centralised approach,
and a utility function derived from the objectives of the system and its
operating agents to decide whether or not to adopt a norm. The model
is evaluated using a traffic junction scenario and the results show its effi-
cacy to optimise multiple objectives while adopting synthesised norms.

Keywords: Norms synthesis · Multi-objective · Heterogeneous
multi-agent systems

1 Introduction

Multi-agent systems (MAS) are complex systems consisting of agents which are
autonomous entities with their own objectives, and can act dynamically. Agents’
objectives can be represented by tasks they want to achieve, these tasks can
be unintentionally supportive to other agents’ objectives or incompatible with
them [8]. Aside from the ability of the agents to have multiple objectives, agents
may have heterogeneous types, in which each type has its own characteristics,
preferences or category [7]. Moreover, agents can operate in open system settings
where they can move freely inside and outside of the system. MAS is applied in
many real world applications such as traffic systems [1,7], computer networks
[4], smart energy grids [9] and the internet of things systems [13]. However, in
such systems, it is not only crucial to model the heterogeneity, openness and
autonomy of the agents, but also it is essential to consider the agents’ behaviour
coordination.
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Norms are behaviour guidelines imposed by a society or social group to reg-
ulate agents’ actions. For example, in a traffic system, one norm is to slow down
when seeing a senior driver because he might be more cautious than other drivers
and drive slowly. Another example is represented in the norm of leaving the right
(fast) lane empty when there is an ambulance. Accordingly, norms representa-
tion helps agents to achieve their objectives in an acceptable manner within their
social groups without compromising their autonomy. This would facilitate group
decision making, cooperation, and coordination between agents [12].

Multi-agent systems that encapsulate norms concepts such as prohibitions,
obligations and permissions are called Normative Multi-Agent Systems (Nor-
MAS) [2]. NorMAS rely on norms for regulating the behaviour of agents while
reserving their autonomy property [2]. Norms have dynamic nature, and so each
norm’s life cycle begins with norm synthesis (which relies on creating and com-
posing a set of norms [11]) and ends with norm disappearance [6].

Various efforts of researchers were directed to proposing a reliable norm syn-
thesising mechanisms that can be used to synthesise norms at run-time and/or
in an open system. The challenge of an open environment is that agents can
enter and leave the system freely, and so a special technique is needed for align-
ing all of the agents with the system norms, particularly for the new agents
entering the system. Moreover, synthesising norms at run-time would demand
an online strategy for triggering new norms creation and update according to
the changing environment. IRON [11], a state-of-the-artwork, was one of the
most prominent mechanisms that showed its efficacy in synthesising norms at
run-time in an open NorMAS. However, it has two main limitations. First, the
synthesising strategy used may produce biased norms. For example, in a traffic
junction scenario, IRON can synthesise a norm that obligates the driver to stop
when he is at an intersection and there is another vehicle to his right trying
to cross at the same time. Although this norm will ensure avoiding the colli-
sion of the vehicles, this will cause the left lane to have higher congestion and
traffic density than the right lane because vehicles in the right lane would have
higher priority to pass. Second, IRON does not consider whether the synthesised
norms contradict the objectives of the system or other norms or not. If the norm
synthesised in the previous traffic junction example is applied while having an
emergency vehicle (ambulance) in the left lane, it will be against the system’
objectives; if it aims to minimise the total waiting time of emergency vehicles.
An example of contradicting norms is seen when it is a norm that a driver drives
at an average or slow speed when having a child on board, and also the same
car might drive too fast when the child has an emergency. So, in this case, two
different unmatchable norms appear: (i) a car drives slowly if a child is on board,
and (ii) a car drives too fast in case of having an emergency case.

In this paper, we overcome the limitations of IRON and the other related
work by proposing UNS, a utility-based norm synthesise model. UNS coor-
dinates norms and objectives, handle unmatchable norms, and support fairer
technique of norm synthesising. In UNS, a utility-based case-based reasoning
technique is proposed to facilitate the coordination of norms and objectives of
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agents and the system. UNS uses the case-based reasoning algorithm to syn-
thesise norms. The utility function determines the necessity of norms adoption
and elicits the suitable norm when there are unmatchable norms. Two norms
are called unmatchable norms, when only one of them should be applied at the
same time and context. For example, consider norm na, which suggests to stop
if there is a car on the left side of a junction, and norm nb, recommending to
stop if there is a car on the right side of a junction. Although by applying these
two norms a collision would be avoided, a deadlock situation will be created as
well. The utility function is constructed based on the objectives of the system to
ensure that they are considered in the process of norms reasoning. UNS is eval-
uated using a simulated traffic scenario in SUMO and results show the system’s
capability of synthesising and reasoning norms at run-time while reaching the
system’s objectives.

The remainder of this paper is as follows: Sect. 2 covers the related work and
the essential state-of-the-art work (IRON) needed to understand our model. The
problem statement is defined and formulated in Sect. 3. In Sect. 4, the proposed
model (UNS) is illustrated, and then it is empirically evaluated in Sect. 5. Finally,
in Sect. 6, the conclusion and future work are elaborated.

2 Related Work

Synthesising norms is more challenging in open and run-time NorMAS. In open
systems, the challenge is to transfer norms to new agents entering the system and
make use of the norms adopted by other agents before leaving the system. Mah-
moud et al. [10] address this challenge by proposing a potential norms detection
technique (PNDT) for norms detection by visitor agents in open MAS. They
implemented an imitating mechanism which is triggered if the visitor agents,
who are monitoring the norms of the host agents, discovered that their norms
are in-compliant with the norms of the other host agents. However, PNDT tech-
nique used a fixed set of norms, which are commonly practised by the domain,
ignoring the dynamic nature of norms.

In run-time NorMAS, it is challenging to define a dynamic set of norms
and initiate it. Moreover, real run-time applications would not only demand
synthesising new norms but would also require handling the whole norms life-
cycle including norms refinement and disappearance. One of the efforts directed
towards run-time norms revision was carried out in [3], in which a supervision
mechanism for run-time norms revision was proposed, addressing the challenge
of norms modification when weather changes or when accidents happen. How-
ever, the norms revision mechanism is developed using a primary defined pool
of norms and situations. In the revision process, the model just substitutes the
norms depending on the situation; limiting the norms to a static set of norms.
Accordingly, the dynamism is in altering the chosen norms set depending on
an optimisation mechanism constructed based on the system’s objectives and
does not handle the changes and evolution of the norms. In [5], Edenhofer et al..
present a mechanism for dynamic online norm adaption in a heterogeneous dis-
tributed multi-agent system for handling colluding attacks from agents with bad
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behaviour. The agents interact together and build a trust metric to represent
the reputation of the other agents. The main focus of this paper is identifying
the bad agents and showing that using norms improves the system’s robustness.
Although this work is based on an open, heterogeneous and distributed envi-
ronment, it does not identify how norms can be revised and updated in this
context.

IRON machine was developed by Morales et al. and presented in [11]. It
addresses the limitations of the other previously mentioned works, as the main
aim of IRON is to synthesise norms online using an effective mechanism that
not only synthesises norms in run-time but also revises these synthesised norms
according to their effectiveness and necessity and further dismisses the inefficient
norms. IRON simulates multi-agent systems, in which norms are synthesised for
coordinating the behaviour of agents, and handles conflicting situations that
can occur, such as collisions of vehicles in a traffic scenario. As presented in
[11], IRON is capable of run-time norm synthesising and addressing the issues
of using static norms, however, the idea of coordinating norms and objectives is
not addressed.

Accordingly in this paper, we will propose UNS which is not only responsible
for online-norm synthesis in open multi-agent systems but also guarantees objec-
tive consideration in the process of norm reasoning by the aid of utility-based
technique.

As this work represents a series of the closest and comprehensive efforts
exerted towards online norm synthesis for MAS, in the following sub-section an
extended elaboration for IRON strategy and algorithm will take place and will
be further used as the baseline of our model.

2.1 Intelligent Robust On-line Norm Synthesis Machine (IRON)

IRON machine is composed of a central unit that is responsible for detection
of conflicts, synthesises of new norms to avoid conflicts, evaluation of the syn-
thesised norms, refinement of norms, and announcement of the norm set to the
agents. To simplify the illustration of the responsibilities of IRON, we will use a
traffic junction example with two orthogonal roads scenario. The vehicles repre-
sent the agents, each occupying a single cell and moving in a specific direction
per time-step.

– In conflicts detection, conflicts are detected when a collision occurs between
two or more vehicles. The occurrence of a collision will trigger IRON to syn-
thesise new norm to avoid future collisions of similar cases. As for norms syn-
thesising, norms are created based on a case-based reasoning algorithm. In
the algorithm, the conflicting situation at time t is compared to the conflicting
vehicles’ context at time t − 1. Then a norm is created using the conflicting
views as a precondition for applying the norm and prohibiting the ‘Go’ action
in this context. The synthesised norm is then added to a norms set and commu-
nicated to the agents (vehicles) of the system. For example, in Fig. 2, if vehicle
A and B collided at the intersection (grey cell) then the context and action of
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A or B is chosen randomly by the system to create a new norm. If A is chosen
the new norm will be n = if(left(<), front(−), right(<)) −→ proh(‘Go’).
The left() attribute in the precondition of the norm stores the direction of the
left neighbour vehicle of vehicle A. While the right() attribute stores the direc-
tion of the right vehicle to vehicle A, which is in this case vehicle B. Similarly,
the front() attribute would store the direction of the front vehicle, however,
because there is nothing in front of the vehicle the symbol (−) is used.

– Norms Evaluation is carried out by measuring necessity and effectiveness
of a norm and comparing it to a threshold. Necessity is measured according
to the ratio of harmful violated norms, which are norms that resulted in
conflicts when violated, compared to the total number of violated norms.
The methodology used in the calculations is akin of reinforcement learning,
in which the norm’s necessity reward NNR is calculated by:

NNR =
mVC

(n) × wVC

mVC
(n) × wVC

+ mVC̄
(n) × wVC̄

(1)

mVC
(n): Number of violations which led to conflicts

wVC
: Weight that measure the importance of harmful applications

mVC̄
(n): Number of violations which did not led to conflicts

wVC̄
: Weight that measure the importance of harmless applications

The effectiveness of norms is measured based on the extent to which the norm
is successful (i.e. which resulted in the minimum number of conflicts). The
norm’s effectiveness reward NER is calculated by:

NER =
mAC

(n) × wAC

mAC
(n) × wAC

+ mAC̄
(n) × wAC̄

(2)

mAC
(n): Number of applied norms which led to conflicts

wAC
: Weight that measure the importance of unsuccessful applications

mAC̄
(n): Number of applied norms which did not led to conflicts

wAC̄
: Weight that measure the importance of successful applications

– Norms refinement is carried out by generalisation or specialisation of
norms. Norms are mapped in a connected graph that expresses the rela-
tionships between them. In other words, the graph shows the child and
parent norms and their links. Norms generalisation is applied when two or
more norms have acceptable necessity and effectiveness results compared to a
threshold, which is primarily specified before the system run, for time-interval
T . Specialisation or deactivation of norms is conducted when the effectiveness
and necessity of the norm or its children have been below the threshold for
time-interval T .

– Norms communication is the final step, in which the norms are communi-
cated to the agents.

The main flow of activities that are carried out in the scenario of the traffic
junction (similar to Fig. 2), is as follows. Vehicles (agents) movements take place
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per time-step, however, prior to these movements, the vehicles check the norms
set for applicable norms. Applicable norms are norms with preconditions that
matches the context (local view) of the agents. When a new collision is detected,
a random agent/vehicle is chosen and then its context is added as a precondition
of a new norm that prohibits the ‘GO’ action. Afterwards, this norm is added
to the norms set (initially empty). In addition, norms evaluation and refinement
are carried out per time-step, in which all the views at time-step t are revised to
determine the set of applicable norms for each of the views. The retrieved set of
applicable norms is divided into four subsequent sets: (i) applied norms that led
to conflicts (ii) applied norms that did not lead to conflicts (iii) violated norms
that led to conflicts (iv) violated norms that did not lead to conflicts. Then set
(i) and (ii) are used to calculate the effectiveness of each of the norms, while set
(iii) and set (iv) represent the main inputs for the necessity calculation. Finally,
norms refinement is conducted.

3 Problem Statement

Let us consider a norm-aware multi-objective multi-agent system that is com-
posed of a finite set of mobile agents as Ag = {ag1, ag2, ..., agn}. Each agent agi
has a type tagi , set of properties Pagi , set of objectives Oagi and set of adopted
norms Nagi . In addition, the system itself has its own set of objectives Os and
set of norms Ns, where Oagi ⊆ Os and Nagi ⊆ Ns.

The norms are created by a centralised unit in the system in the form of a
pair (α, θ(ac)) and then messaged to the agents. α represents a precondition for
triggering the norm applicability. This precondition reflects a specific context of
the agent coagi , which is the local view of the agent agi that defines its direct
neighbours Ngagi = {ag1, ag2, ..., agk} and their properties such as their moving
direction in the traffic scenario example. So, coagi = {Pagk : agk ⊆ Ngagi}.
θ symbolises a deontic operator (obligation, prohibition or permission) with a
specific action acagi of agent agi which will apply the norm. For example, if an
action is beneficial for an agent then it is obligated and if an action is harmful
it is prohibited.

The central unit synthesises new norms after a conflicting state c arises
between agents and uses the synthesised norm in future similar cases to avoid
conflicts. Conflicting state c belongs to set of conflicts C, a conflict is considered
detected when two agents or more carry out actions that result in a problem. The
norm is synthesised by comparing the view at conflicting situation at time-step
t, Vt to the view before the conflict occurrence Vt−1. The series of views that
represent different situations at each time-step are added in a ViewTransition V
set (i.e. Vt ∈ V and Vt−1 ∈ V ).

In such a system, there are three main problems to be tackled. First, the
process of synthesising norms should ensure fairness (i.e. created norms cannot
be biased towards specific agents’ situation). For example, if there is a norm
created to coordinate the behaviour of two vehicles ag1 and ag2 in an intersection,
this norm cannot always give priority to the vehicles on the right, because this
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will make the vehicles in the left lane always delayed. Second, when there is more
than one applicable norm in the same context, often unmatchable ones, only one
should be applied to avoid a deadlock situation. For example, in a scenario of
vehicles crossing a junction, if there were two norms created: n1 for stopping if
there was a vehicle on the right, and ń1 for stopping if there is a vehicle on the
left, a decision should be made to apply one of these unmatchable norms only.
Third, the agent’s norms Nagi

and objectives Oagi
should be coordinated to

ensure that the norms’ compliance does not contradict reaching the objectives.

4 UNS: Utility-Based Norm Synthesis Model

UNS is a utility-based norm synthesis mechanism implemented in a normative,
open, run-time, multi-objective, multi-agent system. UNS aims at reaching three
main goals. First, to synthesise norms while supporting fairness during norm cre-
ation. Second, to handle unmatchable synthesised norms. Finally, to coordinate
the objectives of agents with the synthesised norms. Figure 1 shows the architec-
ture of UNS. It shows the five main responsibilities of UNS that take place per
time-step at run-time: conflicts detection, norms synthesising, norms reasoning,
norms evaluation and refinement.

Fig. 1. Utility-based norm synthesis model architecture (components coloured in grey
are inherited from IRON) (Color figure online)

Conflicts detection, norms evaluation and refinement are inherited from
IRON and integrated in UNS. The details of the steps carried out by UNS
are as follows:
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4.1 Conflicts Detection

At each time-step t as agents take actions, a set of monitors (e.g. traffic cameras)
M = {m1,m2, ...,mn} monitor these actions to detect any conflicts. A conflict
c is detected when more than one agent actions contradict at the same view
vi, where vi ∈ V . For example, in a traffic system, if vehicles standing before
a junction in opposite directions decided to move (do a ‘Go action’) towards
the same position, a collision will occur and so a conflict will arise. To detect
conflicts, views V are sent as a parameter to the ConflictDection function
(see Algorithm 1, line 6). A conflict object definition is composed of responsible
agents Agr ⊆ Ag, context of these agents (which is the local views of each of
these agents), and the views transition of a state s between time-step t and t−1,
(vi

st−1
, vi

st).

4.2 Norms Synthesising

Case-based reasoning technique is used for norm synthesising. When a new con-
flict arises, a new case is created and then compared to similar cases and the best
solution is chosen accordingly. In case that no similar case is found a new random
solution is created for this case and added to the set of cases. In this manner,
after conflicts are detected, UNS carries out the norms synthesising steps for
each of these conflicts (see Algorithm 1, line 7 to line 17). All the agents respon-
sible for the conflict are retrieved in Agr (e.g. all the vehicles that collided in
the same intersection are considered as responsible agents). For each of these
agents’ context at t − 1 if an applicable norm was not found (applicable norms
are norms that have the same context as a pre-condition of the norm and the
same agent action prohibited in the norm), a new norm creation process takes
place (line 13). A new norm is composed of agents’ context coagi and prohibited
action θacagi . Getting the context of the agent at the previous time-step as a
precondition of a norm and prohibiting the action that resulted in a conflict
avoids future conflicts that might rise in similar situations. After the norm is
created it is added to the system’s norms set Ω (line 14).

UNS Supporting Fairness: In IRON norms synthesising was carried out by
creating norms as a solution for only one randomly chosen agent from the agents
involved in a conflict. However, in UNS we have proposed a norm synthesising
process, which considers all the contexts of the agents involved in a conflict. For
example, in IRON if two vehicles had a conflict in an intersection, the norm will
be created based on prohibiting a Go action of only one of the two vehicles.
Although this will decrease the probability of creating unmatchable norms, it
will not ensure fairness as one side will always have priority of moving over the
other side.

4.3 Norms Reasoning

The norm reasoning process must meet systems’ objectives and handle unmatch-
able norms simultaneously. This is reached through defining a utility function U
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Algorithm 1. UNS Strategy
1: for each t do
2: Input: Ω, V
3: Output: Ω
4: /*Conflicts Detection*/
5: //Inherited from IRON
6: conflicts ← ConflictDetection(V )
7: /*Norms Synthesis*/
8: for each c ∈ conflicts do
9: Agr ← AgentsInConflictContexts(c)

10: for each agi ∈ Agr do
11: coagi ← GetAgentContext(agi)
12: if hasApplicableNorm(coagi) == false then
13: n ← CreateNorm(coagi , θ(acagi))
14: Ω ← Ω ∪ n
15: end if
16: end for
17: end for
18: /*Norms Reasoning*/
19: for each Vt+1 ∈ V do
20: Na ← GetApplicableNorms(V )
21: if Na.size > 1 then
22: Utilities[] ← null //comment:Utilities[k] = (agi, n, Ui)
23: for each n ∈ Na do
24: Utilities.add(calculateUtility(n), n)
25: end for
26: agx ← getAgent(max(Utilities))
27: agx.applyApplicableNorm()
28: end if
29: end for
30: /*Norms Evaluation*/
31: //Inherited from IRON
32: /*Norms Refinement*/
33: //Inherited from IRON
34: end for

that is constructed based on the system’s objectives Os and is used during the
norm selection.

Utility Function Construction: In this paper, the utility function is con-
structed by adding the objectives with a maximisation function and subtracting
the objectives with a minimisation function. For example, if Os include two
objectives Os = {o1, o2} and o1 is to minimise all vehicles’ average waiting time
and o2 is to minimise the average waiting time of emergency vehicles specifically,
then the system utility function U will be defined as:

U = −o1 − o2 = −1 ∗ (o1 + o2) (3)
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The utility function introduced can be considered as a type of unweighted
additive utility function. In which using an additive approach is supported by
the indifference property assumed between the objectives as all objectives need
to be reached. Moreover, due to the equal preference to satisfying all of the
objectives and eliminating any prioritisation no weights are needed. The general
format of the defined utility function is:

U =
|X|∑

i=1

u(xi) −
|M |∑

j=1

u(mj) (4)

The |X| is the number of the system objectives that needs to be maximised,
and |M | is the number of the system objectives that needs to be minimised.
u(xi) reflects the sub-utility gained from the maximisation of objective xi, while
u(mj) presents the sub-utility gained from the minimisation of objective mj .

Accumulated Utility Calculation: At each time-step before the agents start
moving (taking actions) UNS determines the set of applicable norms Na in each
view Vt (see Algorithm 1, line 20). If more than one norm is applicable for the
same view Vt, then UNS carries out the steps in Algorithm 1 (from line 22 to
line 27) to choose the norm with the highest utility and dismisses the rest of
the norms. For example, if we have a traffic scenario as seen in Fig. 2, where
vehicle A, ag1, and vehicle B, ag2, are willing to move to the same junction
(coloured in grey) at time t, the stored view at time t will be represent by (Vt).
UNS will retrieve the set of applicable norms Na = {n1, ń1}, where n1: is to
stop if there is a vehicle on the right and ń1 is to stop if there is a vehicle
on the left. n1 is suggested for vehicle A and ń1 is suggested for vehicle B.
If both vehicles apply the norms then none of them will move, which result
in a deadlock state. So, a decision must be made to choose only one of the
two unmatchable norms. Accordingly, an empty array of struct is initialised
(in line 21). The struct is composed of agi (which is the responsible agent), n
(which is the applicable norm for this agent agi situation), and Ui (which is the
calculated utility gained by the system if this norm n is applied). For each of
the applicable norms in Na, the utility function is calculated (line 23). However,
in our utility calculation strategy, we calculate an accumulated utility function,
which does not only consider the utility gained by the agent applying the norm,
but also considers all the agents that are indirectly affected by the norm adoption
decision. For example, in Fig. 2, if vehicle A will be the agent that will apply
the norm and will stop if there is a vehicle on the right, it will force vehicles
C,D,E and F to stop as well. While if vehicle B decides to apply the norm ń1
and to stop, vehicle G will be forced to stop as well. Based on this justification,
to ensure gaining the actual maximum utility, UNS aggregates the utility of all
the agents that are affected directly and indirectly with the norms adoption or
dismissal. Then, the norm that gives the maximum utility is applied (lines 26
and 27), and the rest of the norms are dismissed.
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Fig. 2. A traffic junction composed of two orthogonal roads

4.4 Norms Evaluation and Refinement

The norm evaluation and refinement processes are inherited from IRON (illus-
trated in Sect. 2.1). These processes are used to evaluate norms at run-time
using efficiency and necessity equations (Eqs. 1 and 2). If a norm’s efficiency and
necessity does not reach a certain threshold its refinement takes place and it is
specialised or deactivated. Also, if a norm’s efficiency and necessity exceeds a
specified threshold it can be generalised.

5 Empirical Evaluation

In this section we show UNS capability to synthesise norms that support fairness,
to handle unmatchable norms and to coordinate norms and objectives.

5.1 Empirical Settings

We simulate a traffic-based scenario, with a 19 × 19 grid as a road network with
a junction of two orthogonal roads (see Fig. 2). Each road has two lanes; one
for each direction. In Fig. 2, the cells coloured in grey show the four cells that
represent the intersections. Vehicles are the agents and they have two main types:
ordinary vehicles and high priority vehicles to represent heterogeneity. The ratio
of generating priority vehicles to ordinary vehicles is 12:100 respectively. Also, as
it is an open MAS, vehicles can enter and leave the road network freely. Vehicles
move per time-step aiming to reach their final destination which was randomly
generated by the simulator at the beginning of the trip of the vehicle. In each
time-step, the system randomly chooses the number of new vehicles (between
2 to 8 vehicles) to be emitted to start their trip. The system aims at avoiding
conflicts (i.e., the collisions between vehicles) through the synthesised norms.
Norms are defined as a pair that includes the agent context and the prohibited
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action. The agent context is the local view of the vehicle describing the direction
of vehicles on its left, front, and right, which we call neighbouring vehicles. For
example, in Fig. 2 the vehicles in the local context of vehicle F are vehicles A,
C and D. The action prohibited is a ‘Go action’ to avoid vehicle movement
in future similar contexts. UNS synthesises norms and adds them to a norm
set that is initially empty at the beginning of the simulation. When a stable
normative system is reached the system converges. The system has two main
objectives, minimising the average waiting time for all vehicles and minimising
the total waiting time of priority vehicles. The utility function used in the norm
reasoning is constructed based on the previous two objectives as follows:

− 1 ∗ (
Xwt + Ywt

X + Y
+ Ywt) (5)

Xwt: Total waiting time of ordinary vehicles
Ywt: Total waiting time of priority vehicles
X: Number of ordinary vehicles
Y : Number of priority vehicles

5.2 Experiment Results

To evaluate UNS’s performance, three main scenarios are tested with the settings
illustrated in the previous sub-section with varying violation rate of norms, which
represents the ratio of agents obeying the adoption of the norms. UNS will be
compared to IRON machine (explained in Sect. 2.1). The average waiting time
for all vehicles and the total waiting time of priority vehicles are reported to
show the performance of UNS and IRON. Moreover, the number of collisions is
used to reflect the efficiency of the synthesised norms in avoiding conflicts. We
present the moving average of the results at every 50 time-steps obtained from
10 runs of simulation as plotted in Fig. 3, 4, and 5.

5.3 Scenario A (Violation Rate 10%)

Figure 3(a) shows the average waiting time of all vehicles in UNS compared to
the average waiting time of all vehicles in IRON. The average waiting time is
decreased in UNS, particularly from time-step 322. Moreover, it can be noted
that from time-step 322 almost the average waiting time in UNS is constant
with an average value of 1.5 time-steps. As results show, UNS has minimised
the average waiting time of the vehicles and so fulfilling the first objective of the
system.

Figure 3(b) shows the total time taken by priority vehicles per time-step in
UNS compared to IRON. The average total waiting time of priority vehicles
using UNS is 8.09 time-steps, while the average total waiting time of priority
vehicles reached in IRON is 12 time-steps. Moreover, Fig. 3(a) and (b) do not
only emphasise how UNS can coordinate objectives and norms, but the noticed
stability and uniformity of the results show the reliability of UNS which is nec-
essary in real-applications.
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(a) Average waiting time for all vehicle
types

(b) Total waiting time of priority
vehicles

Fig. 3. Scenario A

(a) Average waiting time for all vehicle
types

(b) Total waiting time of priority
vehicles

Fig. 4. Scenario B

Figure 5(a) presents the total number of collisions per time-step, which shows
UNS is able to successfully synthesise norms at run-time to handle collisions. The
results show UNS outperforms the synthesised norms set in IRON. Furthermore,
observations showed that in a lot of time-steps UNS reached zero collisions, unlike
IRON. The average number of collisions in UNS is 0.08 while the average number
of collisions in IRON is 0.17. Also, comparing the total number of collisions, the
total number of collisions in UNS is 51% lower than IRON, which shows the
efficacy of the norm synthesis process.

5.4 Scenario B (Violation Rate 70%)

Figure 4(a) shows the average waiting time of all vehicles in UNS compared to
IRON. The average waiting time in this scenario is increased to 2.45 time-steps
compared to scenario A. However, UNS still outperforms IRON, in which its
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average waiting time per time-step decreased from 2.75 to 2.53 time-steps. This
unexplained decrease in IRON shows the essence of the primary definition of the
system objectives and its incorporation in the model. Moreover, the results show
that even with a high violation rate the system objectives can be achieved using
UNS.

Figure 4(b) shows that UNS and IRON have quite similar range of total wait-
ing time for priority vehicles. However, UNS outperforms IRON as the average
of the total waiting time of priority vehicles is 8.92 time-steps using UNS and
9.24 time-step using IRON.

The results also show that although the violation rate has increased by 60%
compared to scenario A, the average total waiting time of priority vehicles in UNS
has only increased by 9.30%. Furthermore, the number of collisions occurred in
this scenario using UNS is 4.66% fewer compared to IRON as seen in Fig. 5(b).

(a) Scenario A (b) Scenario B

Fig. 5. Total number of collisions

5.5 Scenario C (Violation Rate 0%)

When using 0% violation rate with IRON simulation, IRON is not able to con-
verge and continue the simulation. The reason behind this is that the system
reaches a deadlock when all vehicles obey to the norms. Although, IRON strat-
egy in synthesising norms relies on creating only one norm at a time, it might
synthesises two unmatchable norms at different instances that when applied in
the same conflict causes a deadlock. For example, if one norm is to stop if there
is a vehicle on the right hand side and the second norm is to stop when there
is a vehicle on the left, two lanes of the vehicles standing at the beginning of a
junction will stop endlessly, when there is no violation. However, this situation
does not arise in UNS because it handles unmatchable norms and if more than
one norm is applicable, the utility for both norms is calculated and only one
norm is applied (i.e. in the previous example, one vehicle will ‘Stop’ and the
other will ‘Go’).

In all scenarios, UNS synthesises more norms than IRON. This is due to syn-
thesising all the norms that would contribute in avoiding collision in a specific
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situation, supporting the idea of fairness. For example, in one of the runs IRON
synthesised 15 norms, while UNS synthesised 17 norms. For example, UNS syn-
thesises norm na, na = (left(−), front(−), right(<), P roh(Go)) and norm nb,
nb = (left(>), front(−), right(−), P roh(Go)), both contributing in avoiding a
collision. However, IRON only synthesises nb which will always give priority to
vehicles on the right side of the intersection, and consequently cannot support
fairness.

6 Conclusion and Future Work

In this paper, we proposed a centralised utility-based norm synthesis (UNS)
model which aims at coordinating objectives of the system with the synthe-
sised norms in real-time. Norms in UNS are created to resolve conflicts that
occur between agents and they are synthesised using case-based reasoning tech-
nique. UNS uses a utility function constructed based on the system objectives
for norm reasoning. This ensures that when agents come to applying the synthe-
sised norms, unmatchable norms and coordinated objectives of the system are
handled. In addition, to ensure the effectiveness of the synthesised normative
system the norms evaluation and refinement technique is inherited from IRON
strategy [11]. The model was evaluated using a traffic scenario of two intersect-
ing roads and results were compared with IRON. Results showed the efficiency
of the model to meet the objectives of the system while synthesising norms in
real-time. As future work, in addition to applying the model on another applica-
tion domains two main directions will be followed. First, to use a decentralised
architecture that involves the coordination of the agents in the process of norm
synthesis. This would facilitate building several sets of norms according to each
agent group’s learning and objectives. Second, to transfer the norm reasoning
process to be carried out in the level of agents rather than the system to ensure
the agent’s autonomy in the decision-making process.
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Abstract. An information cascade is a circumstance where agents make
decisions in a sequential fashion by following other agents. Bikhchandani
et al., predict that once a cascade starts it continues, even if it is wrong,
until agents receive an external input such as public information. In
an information cascade, even if an agent has its own personal choice,
it is always overridden by observation of previous agents’ actions. This
could mean agents end up in a situation where they may act without
valuing their own information. As information cascades can have seri-
ous social consequences, it is important to have a good understanding of
what causes them. We present a detailed Bayesian model of the infor-
mation gained by agents when observing the choices of other agents and
their own private information. Compared to prior work, we remove the
high impact of the first observed agent’s action by incorporating a prior
probability distribution over the information of unobserved agents and
investigate an alternative model of choice to that considered in prior
work: weighted random choice. Our results show that, in contrast to
Bikhchandani’s results, cascades will not necessarily occur and adding
prior agents’ information will delay the effects of cascades.

Keywords: Information cascade · Coordination · Probabilistic
graphical model · Bayesian inference

1 Introduction

Propagation of opinions in society has a significant impact. In daily life it is clear
that people are affected by others’ views. For example, in electoral and financial
campaigns, the spreading of news, opinion and rumours can have an enormous
effect on the behaviour of the crowd. When people look at others’ actions, or
listen to others, they update their assessment of the value of those actions and
imitate accordingly.

Information cascades are a social phenomenon in which all individuals from
some point in a sequence onwards make the same decision. It occurs when other
people’s prior choices can strongly impact the choices of those who follow and
it is the result of solely following others while discounting their own opinion.
c© Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-16617-4_7
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Bikhchandani et al., [3] say that, “An informational cascade occurs when it is
optimal for an individual, having observed the actions of those ahead of him, to
follow the behavior of the preceding individual without regard to his own infor-
mation”. This phenomenon can be observed, for example, when people choose a
restaurant or school [2].

People are more attracted when they see that someone already adopted a
trend or chosen a specific fashion. New communication technology such as social
media has become a habit, helping to share new trends, fashion and ideas [6].
It passes very quickly across web technologies when someone shares a particular
fashion he or she likes, and this is subsequently shared by friends [12,17]. Reshar-
ing posts develops an information cascade in social media and leads others to
choose a product, movie, or a specific fashion. Furthermore, recent studies [8,15]
have shown that e-marketing is driven by information cascades. Customer rat-
ings and reviews make a huge impact in online shopping. Thus, often people
become more aware of and start to follow other’s opinions when they need to
shop online, rather than following their own preferences. It is evident that when
shopping in Amazon or Ebay, people rely heavily on others’ choices since the
quality of the goods is still an issue [22].

In addition, an information cascade can aid society to unite its members
for environmental collective action such as minimising emission of carbon and
global warming as well as social and political collective action. Lohmann [16]
notes that cascades are observed in society when individuals join and protest
against a regime to address their political concerns.

It is obvious that people often avoid their own preference or personal signals
and choose to pursue others’ choices as soon as a cascade begins. However, even
though they have strong qualities, people’s own preferences are concealed once
the cascade starts. For instance, the algorithm for discovering the real rating
of an Amazon product was proposed by Wang et al., [22] as people demand
plausible and accurate online reviews. Wang et al., attempted as much as possible
to eliminate the herding effect occurring through online purchasing using their
algorithm. But the actual rating was very difficult to obtain.

Bikhchandani et al., [3] have presented a probabilistic model to explain how
an information cascade comes about, in the context of uptake of a fashion or
fad. Their model predicts that cascades are inevitable, once they start. It is
assumed that there is a true value of the fashion (0 or 1), which may be perceived
correctly (with some probability p >= 0.5) or incorrectly. A cascade can be either
a correct cascade, where eventually all individuals make the choice that aligns
with the true value, or an incorrect one, where eventually all choices go against
the fashion’s true value. The model uses a deterministic model of choice, which
means that the agents choose the action (to adopt or reject the fashion) with the
greatest evidence for its correctness, based on observations of other agents and
their own private information, or make a 50/50 random choice if the evidence
for “adopt” and “reject” is equal.

Bikhchandani et al., presented a high level analysis of their model, which
lacks mathematical details. Our aim is to provide a detailed Bayesian model
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that accounts for the uncertainty about the private information of other
agents. We also wish to investigate the impact of agents making choices non-
deterministically, via random weighted choice as this probabilistic choice model
is claimed to be psychologically more realistic [18,21].

In the model of Bikhchandani et al., the first agent in the chain of observed
agents is assumed to be the first to make a decision to adopt or reject the fashion.
This makes its choice highly influential, as its action is known to correspond
directly to its private signal. Moreover, this is unrealistic in many settings. An
agent may know that the fashion has been around for a while, so it could estimate
a number of prior agents whose actions were unobserved. Our model therefore
uses a prior probability distribution over the count of positive perceptions of the
fashion by these unobserved agents. Even if this is a completely uninformative
prior distribution, it weakens the dominance of the first agent.

2 Prior Work

Besides Bikhchandani et al., many other researchers have highlighted the impor-
tance of information cascades. Benerji et al., [2] introduced a model to investigate
herd behaviour to understand how people adopt others’ actions while ignoring
their own information. They showed that people observe others’ actions and tend
to act in the same way because they believe the previous people have better
information than them. Easley et al., [9] presented a theoretical and experimen-
tal study of herding behaviour. They presented a Bayesian model for sequential
decision-making where people consider the counts of the previous actions and
choose the most common one.

Vany et al., [7] developed an agent-based model to compare the theoreti-
cal aspects of Bikichandani’s concept. Specially, they analysed how people are
attracted to watch a specific movie, as they have multiple choices. The key aspect
of this model is how an agent will be highly influenced by the nearest neighbour’s
action as well as the popularity of different movies. In the same fashion, Lee et al.,
[11] examined how online reviews of a movie are socially influenced [20] by two
different groups such as a general crowd and friends. They concluded that the
reviews of the popular movies show a cascading behaviour. However, people tend
to follow friend ratings regardless of popularity, since these have more impact
than the general crowd rating. Similarly Liu et al., [13,14] analysed how infor-
mation cascades occur in e-book marketing. Particularly, for both paid and free
e-books they experimented to find the effect of information cascades, and found
that an information cascade has a strong impact when selecting paid e-books in
comparison with free books.

Anderson et al., [1] designed a laboratory experiment to show how an infor-
mation cascade occurs. It became apparent that people at some stage discard
their own knowledge and continue to follow others. Huber et al., [10] used
functional magnetic resonance imaging of experimental participants’ brains to
research how a cascade can be stimulated by individual preference. They con-
cluded from their findings that overweighting personal information can trigger
and stop the information cascade.
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Watts [23,24] developed a model to show how agents’ actions interact with
neighbours’ actions by setting a simple threshold rule. Cheng et al., [6] addressed
the prediction of a cascade when sharing a picture post in Facebook. They found
that the size of an information cascade can be predicted by its temporal (observed
time) and structural (caption, language and content) features. Lu et al., [17]
proposed a system to analyse the collective behaviour of information cascades
by analysing a huge social media data set.

3 The Information Cascade Model of Bikhchandani et al.

Bikhchandani et al., [3] considered a sequence of individuals who will choose
between accepting (A) or rejecting (R) a fashion or fad. The model assumes
that there is some true value V ∈ {0, 1} representing the benefit of following the
fashion/fad. Every individual perceives a private signal Xi ∈ {H,L}, represent-
ing a “high” or “low” perception of V . As shown in Table 1 a “high” perception
of V has probability p for V = 1 and 1−p for V = 0, and vice versa for “low”
perceptions.

In the “basic model” considered by Bikhchandani et al., each agent considers
the actions of earlier agents in the sequence, and takes those actions of adopt
or reject as a proxy for what each of those agents perceived their Xi which is
unknown by observing agents. The agent can count all of the previous accepts or
rejects, adds a count 0 or 1 (respectively) given his own information (L or H),
and then chooses his action based on the action with the greatest count. Here
we notice that the actions of agents earlier in the chain are repeatedly used as
evidence by later agents, and their impact may therefore be exaggerated.

The “general model” of Bikhchandani et al., states that an agent will make
its decision based on the expected value of V given the agent’s private signal and
observations of other agents’ actions. Bikhchandani et al., gave the following defi-
nition of agent n+1’s expectation of V given his/her private signal x and observa-
tion history An: Vn+1(x;An) ≡ E[V |Xn+1 = x,Xi ∈ Ji(Ai−1, ai), for all i ≤ n].
Here, Ai−1 is the sequence of prior actions that agent i has observed and
Ji(Ai−1, ai) is a set of possible signals that would have led individual i to choose
action ai given Ai−1. Individual n + 1 adopts if Vn+1(x;An) ≥ C, where C is
the cost of adoption1. However, no computational account is given of how this
expected value is determined by the agent. Their general model also considers
that the Xi values may be drawn from finite ordered set rather than the two
options H and L. But we do not consider this case.

Bikhchandani et al., found that “An informational cascade occurs if an indi-
vidual’s action does not depend on his private signal”. Hence, he ignores his
private signal and will adopt based on the prior agents’ actions alone. This is
true for all subsequent agents too, so they follow their predecessors and create
a cascade. If V = 1, a cascade can be either a correct cascade, where all adopt,
or an incorrect cascade, where all reject, and vice versa for V = 0.

1 This cost is not used in our model.
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Bikhchandani et al., showed that once the cascade starts it will last forever
even if it is incorrect. They also discussed the fragility of cascades. For instance,
cascades can be broken if public information is revealed.

Our aim is to create a Bayesian model of an information cascade that captures
the uncertainty about prior agents’ private information. We avoid the strong
influence of the first agent’s action on later agent’s action through the ability to
model a probability distribution over the information of unobserved prior agents.
The model of Bikhchandani et al., uses a deterministic model of choice in which
an agent ranks options and chooses the highest ranked one. This deterministic
technique2 is commonly used in economic models [5]. Inspired by the work of
Luce, [18,21] we consider the effects on cascades if agents use weighted non-
deterministic choice when choosing to adopt or reject. This means that choice is
probabilistic and an agent may choose randomly from a set of weighted choices,
in proportion to their weights. This has been claimed to be more psychologically
plausible than deterministic choice [21].

Table 1. Signal probabilities [3]

Gain of adopting P (Xi = H | V ) P (Xi = L | V )

V = 1 p 1 − p

V = 0 1 − p p

4 Our Model and Approach

In this section we present our Bayesian model of information cascades. We define
the following variables:

– V ∈ {0, 1}, is the true value of the fad/fashion.
– Xi ∈ {H,L}, is the private signal of the agent: high or low. This represents

agent i’s possibly incorrect perception of V .
– Ai ∈ {A,R}, is the action of the agent: adopt or reject.
– Ci is a count of how many times H appears in the observations of prior agents:
Ci = C0 + |Xi : Xi = H, 1 ≤ i ≤ n|. This will be probabilistically inferred by
each agent since it cannot be directly perceived.

– k is an estimated number of prior agents who made choices that were not
observed by any of the agents. C0 is the count of H signals observed by these
prior agents. As this is unknown, our model uses an estimated probability
distribution for C0.

– p is the signal accuracy, which is assumed to be the same for all agents.

2 Luce refers to this as algebraic choice due to the common use of algebraic rather
than probabilistic models in economics [18].



102 S. Srivathsan et al.

The dependencies between these variables are shown using a probabilistic graph-
ical model [4] in Fig. 1, which is expressed from the viewpoint of agent 4. k and p
are constants, but the other nodes are random variables. Shaded nodes represent
observed variables, and Xi is known by agent i. A4 is shown as a rectangle, as
this is a decision node. Agent 4 will choose A if P (V = 1 | X4, A1, A2, A3) > 0.5,
R if this probability is less than 0.5, and otherwise will make a 50/50 choice
between A and R. An equivalent choice procedure involving Ci is given at the
end of this section.

Fig. 1. Probabilistic graphical model of information cascade from agent 4’s viewpoint

The information cascade model is used as follows. V and Ci are conditionally
independent given Ci−1 and Xi, therefore:

P (V,Ci | Ci−1,Xi) = p(V | Ci−1,Xi) p(Ci | Ci−1,Xi) (1)

Each agent i maintains a joint probability distribution over V and C that is
conditional on the actions observed so far. This is p(V,C0) = p(V ) p(C0 | V ) for
the first agent. We use a uniform prior over V and a binomial distribution for
C0 given V :

P (C0 = c | V = 0) = (1 − p)cpk−c and P (C0 = c | V = 1) = pc(1 − p)k−c (2)

For i > 1, agent i will observe the actions of all prior agents j < i and
compute the joint conditional distribution p(V,Cj | C0, A1, · · ·, Aj). Agents act
and are observed sequentially, so it will already have computed p(V,Cj−1 |
C0, A1, · · ·, Aj−1).3 Once it observes Aj , it first uses Bayes’ Theorem to com-
pute P (Xj | A1, · · · , Aj) :

P (Xj | A1, · · · , Aj) ∝ P (Xj | A1, · · · , Aj−1)P (Aj | Xj , A1, · · · , Aj−1) (3)

3 C0 appears as a condition whenever a sequence of action variables does. Henceforth,
we omit it for brevity.
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where:

P (Xj |A1, · · · , Aj−1)

=
∑

v∈{0,1}
P (Xj | V = v,A1, · · · , Aj−1)P (V = v | A1, · · · , Aj−1)

=
∑

v∈{0,1}
P (Xj | V = v)P (V = v | A1, · · · , Aj−1)

(4)

P (Aj | Xj , A1, · · · , Aj−1) = P (Aj | Xj , Cj−1) (5)

The last line of Eq. 4 holds because Xj depends only on V . Equation 5
holds because, P (Cj−1) contains all the knowledge inferred from observing
A1, · · · , Aj−1.
P (Aj | Xj , Cj−1) is calculated as shown in Tables 2 and 3 for the deterministic
and non-deterministic models of choice, respectively. In the tables, C+1

j−1 denotes
a new random variable formed by shifting Cj−1 right by one count value. i.e.
C+1

j−1 = c ⇐⇒ Cj−1 = c − 1. This represents the addition of the count 1 for
Xj = H to Cj−1.

Table 2. P (Aj | Xj , Cj−1) for deterministic choice

Xj Condition on Cj−1 P (Aj =A) P (Aj =R)

H P (C+1
j−1 > k+j

2 ) > P (C+1
j−1 < k+j

2 ) 1 0
P (C+1

j−1 > k+j
2 ) < P (C+1

j−1 < k+j
2 ) 0 1

P (C+1
j−1 > k+j

2 ) = P (C+1
j−1 < k+j

2 ) 0.5 0.5
L P (Cj−1 > k+j

2 ) > P (Cj−1 < k+j
2 ) 1 0

P (Cj−1 > k+j
2 ) < P (Cj−1 < k+j

2 ) 0 1
P (Cj−1 > k+j

2 ) = P (Cj−1 < k+j
2 ) 0.5 0.5

Table 3. P (Aj | Xj , Cj−1) for non-deterministic choice

Xj P (Aj =A) P (Aj =R)

H P (C+1
j−1 > k+j

2 ) + 1
2P (C+1

j−1 = k+j
2 ) P (C+1

j−1 < k+j
2 ) + 1

2P (C+1
j−1 = k+j

2 )
L P (Cj−1 > k+j

2 ) + 1
2P (Cj−1 = k+j

2 ) P (Cj−1 < k+j
2 ) + 1

2P (Cj−1 = k+j
2 )

Agent i can then compute p(V,Cj | A1, · · ·, Aj) as follows:

P (V = v, Cj = c | A1, · · ·, Aj) =
P (V = v, Cj−1 = c | A1, · · ·, Aj−1)P (Xj = L | A1, · · ·, Aj) +
P (V = v, Cj−1 = c − 1 | A1, · · ·, Aj−1)P (Xj = H | A1, · · ·, Aj)

(6)
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When it is agent i’s turn to act, it will know P (V = v, Ci−1 = c |
A1, · · ·, Ai−1) and will have its own signal Xi to calculate P (Ci | Ci−1,Xi) as
follows. Since V and Ci are conditionally independent given Ci−1 and Xi, we
have:

P (Ci = c | Ci−1,Xi = x) =

{
P (Ci = c−1) if x = H

P (Ci = c) if x = L
(7)

Finally, as agent i now has a probability distribution over Ci, it can choose
between the options A and R by comparing p1 = P (Ci > k+i

2 | · · · ), p2 =
P (Ci < k+i

2 | · · · ) and p3 = P (Ci = k+i
2 | · · · ). For deterministic choice, if

p1 > p2 it chooses A, and if p2 > p1 it chooses R. Otherwise it tosses an evenly
weighted coin to choose between the two options. For non-deterministic choice,
a random weighted choice is made with weights p1 + p3

2 for A and p2 + p3
2 for R.

5 Experiment and Results

5.1 Deterministic Model

As a first step we implemented4 a deterministic choice model [3] using our
Bayesian approach. Our model uses the probability distribution P (Ci | Ci−1,Xi)
to choose actions.

We ran cascade simulations 1000 times for 100 agents for different values
of v ∈ {0, 1}, p ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and k ∈ {1, 20, 40}. In a single graph
we plot two lines, red and green, for each run. The green line indicates the
cumulative frequency of acceptances (A) and the red line indicates the same
for rejections (R). Figures 2a and 2b illustrate this type of plot for a single run
for a chain of 10 agents where the choices are A, A, A, R, R, A, A, A, A, A,
(cascade, majority of agents are accepting) and A, A, R, A, A, R, R, A, R, A
(no cascade, mixture of As and Rs) respectively. A cascade is shown when one
line extends upwards and covers the entire range while the other line stays at
the bottom. Cascades do not occur if lines stay in the middle of the image. For
our experiment with 100 agents Figs. 3, 4 and 5 show the outcome of simulation
which start with 1, 20 and 40 prior agents, respectively, for V = 1. We have
separate graphs for each value of p ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. It is evident from
the graphs that there is always a high chance of cascades where everyone adopts
when V = 1 and everyone rejects when V = 0. The results for V = 0 are similar
to those for V = 1, except that the colours are swapped as R is dominant when
V = 0. These graphs are similar to the results obtained from Bikhchandani’s
original model [3].

4 The implementation of our model in Python can be found at https://github.com/
ashalya86/Information-cascade-models.

https://github.com/ashalya86/Information-cascade-models
https://github.com/ashalya86/Information-cascade-models
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(a) (b)

Fig. 2. Graph for a single simulation of cascading and non cascading patterns

(a) (b) (c)

(d) (e)

Fig. 3. Cumulative frequencies of adopts and rejects for 100 agents over 1000 runs with
V = 1 for each p with 1 prior agent for deterministic choice (best viewed in colour)

5.2 Non-deterministic Model

We wish to investigate how the deterministic model of choice in the model of
Bikhchandani et al., impacts their results, given that non-deterministic choice
has been described as more psychologically plausible [21]. We modified our imple-
mentation to pick an action using random weighted choice (Table 3). As a result,
even if the most likely optimal choice is to adopt, the agent could still choose
the less likely one and reject.

As for the deterministic choice model, in a single graph we plot cumulative
frequency of acceptances (A) and rejections (R) for 1000 runs of 100 agents for
each p. The plots of cascades which begin with 1, 20 and 40 prior agents for
V = 1, are seen in Figs. 6, 7, 8. The results for V = 0 are similar to V = 1,
except that the colours are swapped as R is dominant when V = 0.

Simulation results suggest that for high accuracy perception of the true value
of a choice (p ∈ {0.8, 0.9}, Figs. 6d, 6e, 7d and 7e), cascades still occur, but for
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(a) (b) (c)

(d) (e)

Fig. 4. Cumulative frequencies of adopts and rejects for 100 agents over 1000 runs with
V = 1 for each p with 20 prior agents for deterministic choice (best viewed in colour)

(a) (b) (c)

(d) (e)

Fig. 5. Cumulative frequencies of adopts and rejects for 100 agents over 1000 runs with
V = 1 for each p with 40 prior agents for deterministic choice (best viewed in colour)

lower accuracy perception, cascades are replaced by a bias towards one choice
that is greater than would be expected if only the odds of correct vs. incor-
rect perception were considered (Figs. 6a, 6b, 7a and 7b). Although the ratio of
choosing As over Rs starts with 0.6 and 0.4 for p = 0.6, one choice becomes
increasingly dominant and it still shows the possibility of no cascade occurring
(Figs. 6b and 7b).

According to Bikhchandani’s model, the first agent’s private information can
be uniquely determined from its action, which makes its choice highly influen-
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(a) (b) (c)

(d) (e)

Fig. 6. Cumulative frequencies of adopts and rejects for 100 agents over 1000 runs with
V = 1 for each p with 1 prior agent for non deterministic choice (best viewed in colour)

(a) (b) (c)

(d) (e)

Fig. 7. Cumulative frequencies of adopts and rejects for 100 agents over 1000 runs
with V = 1 for each p with 20 prior agents for non deterministic choice (best viewed
in colour)

tial. Therefore, our model starts by assuming there are some unobserved agents
present and uses a prior distribution over C and V .

For instance, suppose there are assumed to be 20 unobserved prior agents.
Then the model creates a uniform prior for V and a binomial distribution over
the count of prior H signals given V , in terms of p, for 20 prior agents. We
then do the Bayesian inference. We obtained a significant change in cascades
while plotting the cascade with different numbers of prior agents. We notice
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(a) (b) (c)

(d) (e)

Fig. 8. Cumulative frequencies of adopts and rejects for 100 agents over 1000 runs
with V = 1 for each p with 40 prior agents for non deterministic choice (best viewed
in colour)

that the prior agents delay the occurrence of cascades. While the proportions of
two choices have wider deviation for 1 prior agent (Figs. 6b, 6c, 6d and 6e), it
gradually reduces for 20 prior agents (Figs. 7b, 7c, 7d and 7e) and 30 (Figs. 8b,
8c, 8d and 8e)

6 Conclusion

An information cascade happens when people observe the actions of their prede-
cessors and try to follow these observations regardless of their own private infor-
mation. We presented a full Bayesian account based on the model of Bikhchan-
dani et al., [3]. We maintain a probability distribution over V and the (unknown)
counts of high (H) signals received by the agents. Rather than always choosing
the most likely option, agents make a weighted choice between Adopt and Reject.
We do not assume that the first agent that was observed was the first to con-
sider the fad. Instead, we incorporate prior knowledge of unobserved agents. This
means that first (observed) agent’s choice is less dominant than in the earlier
model. Our findings show that prior agents delay the occurrence of cascades.
Furthermore, in contrast to the predictions of Bikhchandani et al., our results
show that cascades will not necessarily occur. The graphs obtained show that, for
lower accuracy perception, cascades occur with much less probability. However,
as p gets high, there is a high chance of cascades.

While people may not be good at Bayesian reasoning, as used in our model,
we believe that appropriate software using our model could support users to
assess the evidence from others’ choices, including the possible presence of unob-
served agents. This could help to reduce the likelihood of cascades. Using a plugin
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or extension in social media or market place could help people make their choices
by analysing the observations including probability distributions over the counts
of the private signals of prior actors using our Bayesian approach. Not only would
this help individuals to make appropriate choices, but also businesses might find
it beneficial to analyze the diffusion of information in the launch of products [19].
Investors might find it useful when understanding stock markets and prediction
markets. Government and political parties could obtain better predictions of get
the actual information of people’s opinions during election campaigns.

Acknowledgements. This work was supported by the Marsden Fund Council from
New Zealand Government funding, managed by Royal Society Te Apārangi.
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Abstract. We focus on how individual behavior that complies with
social norms interferes with performance-based incentive mechanisms
in organizations with multiple distributed decision-making agents. We
model social norms to emerge from interactions between agents: agents
observe other the agents’ actions and, from these observations, induce
what kind of behavior is socially acceptable. By complying with the
induced socially accepted behavior, agents experience utility. Also, agents
get utility from a pay-for-performance incentive mechanism. Thus, agents
pursue two objectives. We place the interaction between social norms and
performance-based incentive mechanisms in the complex environment of
an organization with distributed decision-makers, in which a set of inter-
dependent tasks is allocated to multiple agents. The results suggest that,
unless the sets of assigned tasks are highly correlated, complying with
emergent socially accepted behavior is detrimental to the organization’s
performance. However, we find that incentive schemes can help offset the
performance loss by applying individual-based incentives in environments
with lower task-complexity and team-based incentives in environments
with higher task-complexity.

Keywords: Agent-based modeling and simulation · NK-framework ·
Emergence · Socially accepted behavior

1 Introduction

Norms are defined as behavior that is common within a society or as rules that
are aimed at maintaining specific patterns of behavior which are acceptable to
(the majority) of a society [33]. In line with this definition, Sen and Airiau [35]
stress that norms facilitate coordination – they refer to Lewis [28] who argues:
“Everyone conforms, everyone expects others to conform, and everyone has good
reason to conform because conforming is in each person’s best interest when
everyone else plans to conform”, and conclude that norms can be interpreted as
external correlating signals that promote behavioral coordination.
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Despite being a focus of research in many scientific disciplines, a consen-
sus about the ontology of norms has not yet been reached [31]. In this paper,
we follow the classification introduced by Tuomela et al. [37], who distinguish
between four types of norms, namely (i) rule norms, (ii) proper social norms,
(iii) moral norms, and (iv) prudential norms (see also [33]). They argue that
the (i) rule norms can be either formal or informal. The former are articulated
and written with formal sanctions and brought into existence by an authority,
the latter are articulated but usually not written down, associated with infor-
mal sanctions and brought into existence by group members’ mutual implicit
or explicit agreement. Morris-Martin et al. [33] add that rule norms are often
also referred to as laws. With respect to (ii) social norms, Tuomela et al. [37]
distinguish between conventions, which apply to an entire community, society or
social class, and group-specific norms, which are specific to one or more groups,
but not to the entire society. This understanding of social norms is in line with
the definition introduced in Cialdini et al. [9], who add that social norms are usu-
ally not accompanied by enforcing laws. Mahmoud et al. [30] stress that social
norms can be interpreted as informal rules and standards which entail what oth-
ers expect, e.g., in terms of behavior, and have a non-obligatory character. The
latter implies that social norms are self-enforcing and that there are often social
processes underlying norms that ensure that non-conforming results in a social
punishment [4,35]. Thus, obeying social norms is often regarded to be rational
due to the threat of social sanctions [14]. Finally, Morris-Martin et al. [33] and
Tuomela et al. [37] line out that (iii) moral norms are intended to appeal an
individual’s conscience and (iv) prudential norms usually follow the principles
of rationality.

In this paper, we adopt the notion of (ii) social norms introduced above.
Their presence has been widely recognized in the academic literature. The field
of multi-agent systems is, for example, concerned with the emergence of social
norms and their enforcement in agent societies. Recent reviews of research on
norms in multi-agent systems are provided by Morris-Martin et al. [33] and
Alechina et al. [2]. Cranefield et al. [11] line out that the way norms are included
in decision making algorithms needs to be explicitly formulated by the designer,
while for human agents, norms (and values) are highly entrenched in the decision
making process. This is in line with Kohlberg [24], who argues that individuals
have an endogenous preference to conform to the behavior of their peers, which
is why social norms play a central role in a multiplicity of contexts in which
humans interact and make decisions, such as decisions between different courses
of action in organizations or in politics [35].

We apply social norms to the context of organizations which consist of col-
laborative and distributed decision makers and focus on the interaction between
emergent social norms (at the level of individuals) and performance-based incen-
tives, the behavioral implications of this interaction, and its consequences for the
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performance of the overall system.1 By doing so, we focus on social norms which
emerge from past decisions of fellow agents within an organization [8].

The remainder of this paper is organized as follows: Sect. 2 reviews the
research on social norms, Sect. 3 describes the structure and methodology we
use to model the simulation of organizational environment with emergent social
norms and varying performance-based incentives, Sect. 4 elaborates on results
and findings, and Sect. 5 concludes this paper.

2 Related Work

Considering social norms as key-factors which drive individual behavior is not
a new issue in research. Early work on this topic goes back to social approval
of individual behavior [18,36]. A recent survey of interactions between social
norms and incentives is provided by Festre [15], who argues that social norms are
supplementary motives to self-interest, which is commonly assumed for economic
agents. He presents the following two empirical findings to support this assertion:
(i) a large proportion of Americans do not apply for welfare programs, even
when they are eligible [32], and (ii) in donations to charity, whether the list
of contributors is published or not, has an effect on the total amount donated
[3,17]. Festre [15] claims that the reason for this behaviour can be traced back
to social norms.2

Festre [15] reviews current studies on social norms in economic theory and
concludes that there might be two explanations for social norms as a driver
of individual behavior: (i) the individual desire for conformity and (ii) positive
externalities. For (i) the individual desire for conformity, she argues that indi-
viduals care about their social status (e.g., in terms of popularity or respect) and
therefore want to conform to social norms. This explanation is in line with pre-
vious studies [6,38]. With respect to (ii) positive externalities, Festre [15] refers
to Coleman [10], who lines out that situations, in which the same outcome sat-
isfies the interests of others, enforce social norms. Consequently, since everyone
has incentives to reward others for working towards this outcome, all individu-
als have two sources of utility: the reward for the effort one made towards the
outcome (i.e., the incentives), and the rewards provided by others for helping to
achieve that outcome (in terms of social approval). This argumentation is also
in line with Janssen et al. [21] and Huck et al. [19], who argue that individual
behavior is driven by multiple forces and that interactions may exist among these

1 Note that along with social norms at the individual level, previous research also
addresses social norms at the level of organizations: Dowling et al. [12], for exam-
ple, conceptualize organizational legitimacy as congruence between the social values
associated with an organization’s action and the norms of acceptable behavior in
the social system of the organization. This paper, however, focuses on social norms
within an organization.

2 For extensive discussions on the role of social norms in behavioral control, the reader
is also referred to [25,39], and most recently [29] and the literature cited in these
studies.
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forces (e.g., in terms of reinforcement or weakening). Festre [15] adds that pre-
vious research has shortcomings in the way it deals with behavioral responses
to norms or changes in norms, and that the interaction between endogenous
social norms and incentives should be further addressed. The latter is also in
line with Kübler [25], who argues that social norms have been considered as
being exogenous (and, thus, not emergent) for (too) long. Some work in the field
of psychology addresses social norms, but puts the focus on the emergence in
the sense of learning which type of behavior is socially approved: Paluck et al.
[34], for example, are concerned with evolving norms in the context of social
networks in schools and Ehrhart et al. [13] address citizenship behavior in orga-
nizational units. Previous research in the field of economics has, amongst others,
addressed how performance-based incentives can change the meaning of following
a social norm [19,25], and how incentive framing and social norms interact with
respect to behavioral implications [29]. Moreover, previous research has found
that, under specific circumstances, monetary incentives can crowd out incentives
provided by intrinsic factors, such as social norms [5,21].

We implement emergent social norms in the sense of Cialdini et al. [8], who
state that social norms emerge from the shared knowledge about the past behav-
ior of peers and are determined by the strength of social interactions and the
similarity of decisions, regardless of the impact of the norms on the outcomes.
Thus, we focus on the behavior that is normal in the population, rather than
what is declared (morally or otherwise) to be a desired behavior [1,8]. This
allows us to model the social norms solely as an emergent phenomenon without
imposing the desirability qualities to particular actions.

Fischer and Huddart [16] similarly acknowledge that social norms can emerge
endogenously: they argue that there is a complex relationship between individ-
ual behavior and social norms within an organization, as they are mutually
dependent. If an agent’s peers are members of the same organization, individual
behavior determines the organization’s social norms, which, in turn, influence
individual behavior. They acknowledge, however, that individual behavior of
the members of an organization is affected not only by social norms but also
by other means of behavioral control, such as incentive systems. They conclude
that social norms (i) emerge endogenously within organizations from the indi-
vidual behavior of the organization’s members and their interaction, and (ii)
might be endogenously affected by choices related to organizational design ele-
ments. They explicitly point out that further investigation of the interaction
between social norms and incentives is required. This is where we place our
research: we study how social norms affect the performance in organizations
with collaborative and distributed decision makers and how they interact with
performance-based incentive mechanisms.

3 Model

This section introduces the model of a stylized organization which is imple-
mented as a collective of P agents facing a complex task. The task environ-
ment is based on the NK-framework [23,26,41]. Agents face the dilemma of
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pursuing two objectives simultaneously, namely, to conform to emergent social
norms and to maximize their individual (performance-based) utility. We model
agents to employ the approach of goal programming to dissolve this dilemma and
observe how interactions between social norms and (performance-based) incen-
tives affect the organization’s performance for t = {1, 2, . . . , T} periods. The
task environment, in which the organization operates, is introduced in Sec. 3.1,
while Sects. 3.2 and 3.3 characterize the agents and describe how social norms
emerge, respectively. Section 3.4 describes the agents’ search for better perform-
ing solutions to the decision problem and the approach of goal programming is
introduced in Sect. 3.5. Finally, Sect. 3.6 provides an overview of the sequence of
events during simulation runs.

3.1 Task Environment

We model an organization that faces a complex decision problem that is
expressed as the set of M binary choices. The decision problem is segmented
into sub-problems which are allocated to P agents, so that each agent faces an
N -dimensional sub-problem. We denote the organization’s decision problem by
an M -dimensional bitstring x = (x1, x2, . . . , xM ), where M = N · P , bits xi

represent single tasks, and xi ∈ {0, 1} for i ∈ {1, 2, ...,M}. Without loss of gen-
erality, we model tasks to be assigned to agents sequentially, such that agent 1 is
responsible for tasks 1–4, agent 2 – for tasks 5–8, and so forth. Formally, agent
p ∈ {1, 2, . . . , P} is responsible for the following vector of tasks:

xp = (xp
1, . . . , x

p
N ) =

(
xN ·(p−1)+1, . . . , xN ·p

)
(1)

Every task xi for i ∈ {1, 2, . . . ,M} is associated with a uniformly distributed
performance contribution φ(xi) ∼ U(0, 1). The decision problem is complex in
that the performance contribution φ(xi), might be affected not only by the deci-
sion xi, but also by decisions xj , where j �= i. We differentiate between two types
of such inter-dependencies: (a) internal inter-dependencies within xp, in which
interdependence exists between the tasks assigned to agent p, and (b) external
inter-dependencies between xp and xq, in which interdependence exists between
the tasks assigned to agents p and q, where p �= q. We control inter-dependencies
by parameters K,C, S, so that every task interacts with exactly K other tasks
internally and C tasks assigned to S other agents externally [22]. Figure 1 illus-
trates four stylized interaction structures considered in this paper. The figure
features M = 16 tasks equally assigned to P = 4 employees for different levels
of complexity.

Based on the structure outlined above, we can formally describe the perfor-
mance contribution of decision xi as follows:

φ(xi) = φ(xi, xi1 , ..., xiK︸ ︷︷ ︸
K internal

interdependencies

, xiK+1 , ..., xiK+C·S︸ ︷︷ ︸
C·S external

interdependencies

), (2)

where {i1, . . . , iK+C·S} ⊂ {1, . . . , M}\i, and the parameters satisfy 0 ≤ K < N ,
0 ≤ C ≤ N , and 0 ≤ S < P . Using Eq. 2, we compute performance landscapes
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for all agents. We indicate time steps by t ∈ {1, 2, . . . , T}. Let xp
t and xt be a

vector of decisions of agent p and a vector of decisions of all agents at time t,
respectively. Then the performance achieved by agent p at time step t is:

φown(xp
t ) =

1
N

∑

xi∈xp
t

φ(xi), (3)

and the organization’s performance at time step t is:

φorg(xt) =
1
P

P∑

p=1

φ(xp
t ) . (4)

In order to capture diversity (or similarity) in the sub-problems allocated to
agents, we consider the correlations between the performance landscapes using
the methodology described in Verel et al. [40]. The performance contributions
of every set of N tasks assigned to agent p are correlated to the performance
contributions of the sets of N tasks assigned to P −1 other agents with a constant
correlation coefficient ρ ∈ [0, 1]. When ρ = 0 and ρ = 1, agents operate on
perfectly distinct and perfectly identical performance landscapes, respectively.

3.2 Agents’ Performance-Based Incentives

The agents’ compensation is composed of a fixed and a variable component:
without loss of generality, we normalize the former to 0. The latter is based on
agent p’s own performance φown (see Eq. 3), and the residual performance φres

resulting from decisions of all other agents. Let x−p
t be a vector of decisions of

all agents other than p:

x−p
t = {xq

t : q ∈ {1, . . . , P}\p} (5)

Then, the residual performance is defined as the mean of own performances of
every agent other than p:

φres(x
−p
t ) =

1
P − 1

·
∑

x∈x−p
t

φown(x), (6)

and agent p’s variable compensation component follows the linear incentive
scheme3:

φinc(x
p
t ,x

−p
t ) = α · φown(xp

t ) + β · φres(x
−p
t ), (7)

where α + β = 1.

3 In our context linear incentives are as efficient as other contracts inducing non-
boundary actions. See [16, p. 1461].
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Moderate
(K = C = S = 2)

High
(K = S = 3, C = 4)

Internal
(K = 3, C = S = 0)

Low
(K = C = S = 1)

Fig. 1. Stylized interdependence structures with M = 16 tasks equally assigned to
P = 4 agents for different levels of complexity. The crossed cells indicate inter-
dependencies as follows: let (i, j) be coordinates of a crossed cell in row-column order,
then performance contribution φ(xi) depends on decision xj .

3.3 Social Norms

We implement the emergent social norms using a version of the Social Cogni-
tive Optimization algorithm [42]. The algorithm features social sharing libraries,
where agents share and observe the information (i.e., the previous decisions)
which they consider in their decision-making later. In our implementation, every
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agent has an individual sharing library (as a memory), and the sharing of infor-
mation happens unidirectionally in directed social networks. Below we explain
this algorithm in detail.

First of all, we differentiate between two types of tasks, namely private and
social tasks. Private tasks are unique to agents, i.e., these tasks cover activities
which are in the area of expertise of a specific agent; within the stylized organi-
zation captured by our model, only one agent will carry out such a task. In an
organization, for example, only the accounting department will be responsible
for the accounts payable and the monthly payroll. Social tasks, on the contrary,
are types of tasks which (in a similar way) concern all agents. In an organization,
every department head will have to make decisions related to their management
style, irrespective of the department. In our formulation, private tasks are not
relevant to social norms, while social tasks are.

Without loss of generality we use the following convention: let Ns indicate the
number of social tasks allocated to each agent. Then the last Ns tasks assigned
to agent p are social:

xp = (xp
1, . . . , x

p
N−Ns︸ ︷︷ ︸

private tasks

, xp
N−Ns+1, . . . , x

p
N︸ ︷︷ ︸

social tasks

) (8)

At every time step t, agents share the decisions on Ns social tasks with
D fellow agents in the same organization according to the network structure
predefined by the modeler.4 Every agent is endowed with a memory Lp in which
the decisions on social tasks, made and shared by other agents, are stored. Due
to cognitive limitations, the agent’s memory is considered to be limited to TL

periods. Once the agents’ cognitive capacity is reached, they forget (remove from
their memory Lp) the oldest information on their fellow agents’ decisions on
social tasks, i.e., they just remember what was shared in the last TL periods and
forget everything that was shared before. Thus, at every time step t, agent p gets
information about the decisions made on social tasks xq

soc from D fellow agents
q ∈ {p1, . . . , pD} ⊆ {1, . . . , P}\p, and stores it for TL time steps in memory Lp.
Social norms do not form in the organization until time period TL.

The extent to which agent p’s decision at time t, xp
t , complies with the emer-

gent social norm is computed as a match rate of the social bits in the memory:

φp
soc(x

p
t ) =

⎧
⎪⎨

⎪⎩

1
Ns · |Lp

t |
∑

x∈Lp
t

h(xp
soc,x), t > TL

0, t ≤ TL

(9)

where |Lp
t | is the number of entries in agent p’s memory at time t and h(x,y)

for two equal-length bitstrings x and y of size J is the number of positions at
which the corresponding bits are equal:

4 We use the bidirectional ring network topology, in which each node is connected to
exactly two other nodes with reciprocal unidirectional links, where nodes represent
agents and the links represent sharing of information.
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h (x,y) =
J∑

i=1

[xi == yi] . (10)

If the statement inside the bracket is true, it equals 1, and 0 otherwise [20].

3.4 Discovering New Solutions to the Decision Problem

At time t, agent p can observe its own performance in the last period, φown(xp
t−1),

and the decisions of all agents in the organization in the last period after they
are implemented, xt−1.

In order to come up with new solutions to their decision problems, agents
perform a search in the neighbourhood of xt−1 as follows: agent p randomly
switches one decision xi ∈ xp (from 0 to 1, or vice versa), and assumes that
other agents will not switch their decisions5. We denote this vector with one
switched element by x̂p

t .
Next, the agent has to make a decision whether to stick with the status quo,

xp
t , or to switch to the newly discovered x̂p

t . The rule for this decision is described
in the next subsection.

3.5 Balancing Performance-Based Incentives and Social Norms
and Making a Decision

Agents pursue two objectives simultaneously: they aim at maximizing their
performance-based incentives formalized in Eq. 7 and, at the same time, want to
comply with the social norms as formalized in Eq. 9. In order to balance these
two objectives, agents follow the approach of goal programming [7] as described
below.

Let gsoc and ginc be the goals that agents have for φsoc(x
p
t ) and φinc(x

p
t ,x

−p
t ),

respectively6. Agent p wants to achieve both goals, so that:

φsoc(x
p
t ) ≥ gsoc, and (11a)

φinc(x
p
t ,x

−p
t ) ≥ ginc (11b)

Let dsoc(x
p
t ) and dinc(x

p
t ,x

−p
t ) be the under-achievements of the set of decisions

(xp
t ,x

−p
t ) on the goals regarding social norms and performance-based incentives

respectively (see Eqs. 7 and 9):

dsoc(x
p
t ) = max{gsoc − φsoc(x

p
t ), 0}, (12)

dinc(x
p
t ,x

−p
t ) = max{ginc − φinc(x

p
t ,x

−p
t ), 0} (13)

5 Levinthal [27] describes situations in which agents switch more than one decision at
a time as long jumps and states that such scenarios are less likely to occur, as it is
hard or risky to change multiple processes simultaneously.

6 Note that agents are homogeneous with respect to goals and that goals are constant
over time.
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As mentioned before, agent p discovers x̂p
t – an alternative configuration to

the decision at t, but can only observe what other agents implemented at the
previous time period, x−p

t−1. Given p’s information, this agent makes the decision
to either implement x̂p

t or to stick with xp
t−1 at t and chooses xp

t according to
the following rule:

xp
t = arg min

x∈{xp
t−1,x̂

p
t }

wsoc · dsoc(x) + winc · dinc(x,x−p
t−1), (14)

where wsoc and winc represent the weights for the goal for compliance with the
social norms (gsoc) and goal for performance-based incentives (ginc) respectively.

3.6 Process Overview, Scheduling and Main Parameters

The simulation model has been implemented in Python 3.7.4. Every simulation
round starts with the initialization of the agents’ performance landscapes, the
allocation of tasks to P = 4 agents7, and the generation of an N -dimensional
bitstring as a starting point of the simulation run (see Sect. 3.1). After initial-
ization, agents perform the hill climbing search procedure outlined above (see
Sects. 3.4 and 3.5) and share information regarding their social decisions in their
social networks (see Sect. 3.3). The observation period T , the memory span of
the employees TL, and the number of repetitions in a simulation, R, are exoge-
nous parameters, whereby the latter is fixed on the basis of the coefficient of
variation. Figure 2 provides an overview of this process and Table 1 summarizes
the main parameters used in this paper.

Fig. 2. Process overview. Upper actions are performed by the modeler and lower actions
are performed by agents

7 For reliable results, we generate the entire landscapes before the simulation, which is
computationally feasible for P = 4 given modern RAM sizes. Our sensitivity analyses
with simpler models without entire landscapes, suggest that the results also hold for
larger population sizes.
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Table 1. Main parameters

Parameter Description Value

M Total number of tasks 16

P Number of agents 4

N Number of tasks assigned to a single agent 4

[K, C, S] Internal and external couplings [3, 0, 0], [1, 1, 1], [2, 2, 2], [3, 4, 3]

ρ Pairwise correlation coefficient between
tasks assigned to different agents

0.3

TL Memory span of agents 20

NS Number of social tasks 2

D Level of social connection (network degree) 2

T Observation period 500

R Number of simulation runs per scenario 300

[ginc, gsoc] Goals for performance-based incentives
(φinc(x

p
t ,x−p

t )) and compliance with the
social norms (φsoc(x

p
t ))

[1.0, 1.0]

[winc, wsoc] Weights for performance-based incentives
φinc(x

p
t ,x−p

t ) and compliance with the
social norms φsoc(x

p
t )

[1, 0], [0.7, 0.3], [0.5, 0.5]

[α, β] Shares of own and residual performances
included in the performance-based
incentive scheme

[1, 0], [0.75, 0.25], [0.5, 0.5],
[0.25, 0.75]

4 Results

4.1 Performance Measure

We indicate the solution (at the system’s level) implemented at time step t
and simulation run r ∈ {1, . . . , R} by xr

t , and the associated performance by
φr
org(x

r
t ) (see Eq. 4). As the performance landscapes on which agents operate are

randomly generated, for every simulation run, we normalize the performances by
the maximum performances per landscape to ensure comparability. We indicate
then normalized performance achieved by the organization at time step t in
simulation run r by

Φ[r, t] =
φr
org(x

r
t )

max
x∈[0,1]M

{φr
org(x)} (15)

We denote the average performance at t by:

Φ[t] =
1
R

R∑

r=1

Φ[r, t], (16)

In Sect. 4.2, we report the distance to maximum performance as a per-
formance measure. Note that this measure captures the cumulative distance
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Internal complexity
(K = 3, C = S = 0)

Low complexity
(K = C = S = 1)

Moderate complexity
(K = C = S = 2)

High complexity
(K = S = 3, C = 4)

Fig. 3. Contour plots for cumulative distances d(Φ) to the maximum attainable per-
formance for different scenarios. The lower (higher) values mean better (worse) perfor-
mance for organization and are indicated by lighter (darker) tones

between the average performances achieved throughout the observation period
and the maximum performance attainable (which equals 1 by construction), and
lower (higher) values of the distance indicate higher (lower) performance:

d(Φ) =
T∑

t=1

(
1 − Φ[t]

)
(17)

4.2 Results of the Simulation Study

The parameters summarized in Table 1 result in 4·3·4 = 48 different scenarios for
4 levels of complexity (internal, low, moderate, and high), 3 pairs of weights for
performance-based incentive and compliance with social norms (high, moderate,
and zero weight on social norms), and 4 different settings for the performance-
based incentive schemes (zero, low, moderate, and high team-based incentives).
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The results are presented in Fig. 3. The contours indicate ranges of similar
distance values, where darker (lighter) colors indicate larger (smaller) values for
the distance to maximum. In other words, the lighter contours represent higher
organizational performance and are more desirable, while the darker contours
represent lower organizational performance and are less desirable. In each plot,
the performance-based incentive scheme (α and β) and the pairs of weights
for incentives and social norms (winc and wsoc) are presented as the horizontal
and the vertical axes, respectively. Please note that performance-based incen-
tive schemes that put full weight on the performance achieved by the agents
individually are included on the left hand side on horizontal axes (i.e., α = 1
and β = 0), while moving to the right decreases the weight of individual per-
formance and increases the weight of residual performance (until α = 0.25 and
β = 0.75). On the vertical axes, scenarios in which agents put strong emphasis
on complying with social norms, are included at the bottom (i.e., winc = 0.5
and wsoc = 0.5), while moving upwards decreases the extent to which agents
care about social norms (until winc = 1 and wsoc = 0). The 4 contour plots
correspond to 4 different levels of complexity presented in Fig. 1.

Looking at the ranges of the plots (the minimal and maximal values), we
observe that as the complexity increases, the average performance drops for all
social norm weights and incentive schemes. This finding is in line with previous
research [22,27].

For scenarios in which agents put full emphasis on performance-based incen-
tives and do not care about complying with social norms (i.e., upper parts of
subplots, where winc = 1 and wsoc = 0), we can observe that the choice of
the incentive scheme does not have an effect on performance in the absence of
external interdependencies (see Fig. 3(a)). However as soon as there are external
interdependencies, even if the task’s complexity is relatively low (see Fig. 3(b)),
the team-based incentive schemes result in a better performance.8 This positive
effect of team-based incentive mechanisms increases with the external complexity
of the task environment (see Fig. 3 (b,c,d)). This finding emphasizes the impor-
tance of differentiating between internal and external interdependencies among
tasks when designing incentive mechanisms. A stronger focus of incentives on the
residual performance (higher values of β) appears to offset some of the negative
effects associated with task complexity only in cases in which the complexity is
not internal (i.e., when C,S > 0). This finding, therefore, extends the literature
that states that residual performance is suitable in presence of externalities [16],
by specifying the nature of these externalities. We also find that the pattern
described above is robust in presence of social norms (i.e., on lower parts of
subplots, the similar effect is observed).

We also observe that as the agents start putting higher weights on the social
norms (i.e. moving down the vertical axis), the contours get darker, meaning that
the performance drops. This represents that complying to social norms can come

8 Please note that task complexity in Fig. 3(b) is relatively low, since every task is
coupled with K + C · S = 2 other tasks. In Fig. 3(a), on the contrary, each task is
coupled with K + C · S = 3 other tasks.
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at a cost for performance, as agents have to consider multiple objectives. How-
ever, as the (external) complexity increases (Fig. 3 (b, c, d)), the extent of this
effect declines, and in situations with high (external) complexity (see Fig. 3 (d))
we observe that the contours are almost vertical, meaning that social norms do
not cause a significant decline in the performance. This can be explained by the
coordinating function of social norms, which can be observed when the task envi-
ronment is too complex to solve individually without any coordination. Apart
from that, our sensitivity analyses show that the decline in performance related
to social norms, disappears for cases with higher correlation among agents’ per-
formance landscapes even for environments with lower complexity.

5 Conclusion

In this paper, we proposed a model of an organization which is composed of
autonomous and collaborative decision making agents facing a complex task.
Agents pursue two objectives simultaneously, i.e., they aim at maximizing their
performance-based incentives and, at the same time, want to comply to the social
norms emerging in their social networks. In our analysis, we focus on the inter-
play between performance-based incentives and social norms. Our main results
are the following: First, if agents focus on performance-based incentives only, the
choice of the type of incentive scheme has marginal effects in task environments
with low level of complexity. As complexity increases, team-based incentives
become more beneficial. However, in environments where inter-dependencies (no
matter how high) exist only within tasks allocated to the same agent, the incen-
tive schemes have zero effect on the performance. Second, if agents focus on
complying to social norms, this comes at the cost of performance at the level
of the system (except for scenarios when agents’ task environments are highly
correlated). Third, whether team-based performance can offset negative effects
on performance, caused by agents that aim at complying to social norms, is
substantially affected by the level of task complexity. For highly complex tasks,
team-based incentives appear to be beneficial, while the opposite is true for task
environments with a low level of complexity.

Our work is, of course, not without its limitations. First, we treat compliance
and non-compliance to social norms equally. In reality, however, non-compliance
to social norms might lead to more fatal consequences than “over-compliance”
[15]. Future work might want to investigate this issue. Second, we limit the
number of agents to 4 and consider ring networks only. It might be a promising
avenue for future research to increase the number of agents and test the effect of
other network topologies on the dynamics emerging from social norms. Finally,
it might be an interesting extension to model the transformation of social norms
into values by adjusting the task environment dynamically.
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Abstract. In this paper, we focus on normative systems for online com-
munities. The paper addresses the issue that arises when different com-
munity members interpret these norms in different ways, possibly leading
to unexpected behavior in interactions, usually with norm violations that
affect the individual and community experiences. To address this issue,
we propose a framework capable of detecting norm violations and provid-
ing the violator with information about the features of their action that
makes this action violate a norm. We build our framework using Machine
Learning, with Logistic Model Trees as the classification algorithm. Since
norm violations can be highly contextual, we train our model using data
from the Wikipedia online community, namely data on Wikipedia edits.
Our work is then evaluated with the Wikipedia use case where we focus
on the norm that prohibits vandalism in Wikipedia edits.

Keywords: Norms · Norm violation detection · Machine learning ·
Wikipedia norms

1 Introduction

The aligned understanding of a norm is an essential process for the interac-
tion between different agents (human or artificial) in normative systems. Mainly
because these systems take into consideration norms as the basis to specify and
regulate the relevant behavior of the interacting agents [9]. This is especially
important when we consider online communities in which different people with
diverse profiles are easily connected with each other. In these cases, misunder-
standings about the community norms may lead to interactions being unsuccess-
ful. Thus, the goals of this research are: 1) to investigate the challenges associated
with detecting when a norm is being violated by a certain member, usually due
to a misunderstanding of the norm; and 2) to inform this member about the fea-
tures of their action that triggered the violation, allowing the member to change
their action to be in accordance with the understanding of the community, thus
helping the interactions to keep running smoothly. To tackle these goals, our
main contribution is to provide a framework capable of detecting norm violation
and informing the violator of why their action triggered a violation detection.

The proposed framework is using data, that belongs to a specific community,
to train a Machine Learning (ML) model that can detect norm violation. We
c© Springer Nature Switzerland AG 2022
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chose this approach based on studies showing that the definition of what is norm
violation can be highly contextual, thus it is necessary to consider what a certain
community defines as norm violation or expected behavior [2,4,16].

To investigate norm violations, this work is specifically interested in norms
that govern online interactions, and we use the Wikipedia community as a
testbed, focusing on the article editing actions. This area of research is not only
important due to the high volume of interactions that happen on Wikipedia,
but also for the proper inclusion and treatment of diverse people in these online
interactions. For instance, studies show that, when a system fails to detect norm
violations (e.g., hate speech or gender, sexual and racial discrimination), the
interactions are damaged, thus impacting the way people interact in the com-
munity [8,11].

Previous works have dealt with norms and normative systems, proposing
mechanisms for norm conflict detection [1], norm synthesis [12], norm violation
on Wikipedia [3,17] and other online communities, such as Stack Overflow [5] and
Reddit [4]. However, our approach differs mainly in three points: 1) implementing
an ML model that allows for the interpretation of the reasons leading to detecting
norm violation; 2) incorporating a taxonomy to better explain to the violator
which features of their actions triggered the norm violation, based on the results
provided by our ML model; and 3) codifying actions in order to represent them
through a set of features acquired from previous knowledge about the domain,
which is necessary for the above two points. Concerning the last point, we note
that our framework does not consider the action as is, but a representation of that
action in terms of features and the relation of those features to norm violation
(as learned by the applied ML model). For the Wikipedia case, we represent the
action of editing articles based on the categorization introduced in [17], with
features such as: the measure of profane words, the measure of pronouns, and
the measure of Wiki syntax/markup (the details of these are later presented in
Sect. 4.2).

To build our proposed framework, this work investigates the combination
of two main algorithms: 1) the Logistic Model Tree, the algorithm responsible
for classifying an article edit as a violation or not; and 2) the K-Means, the
clustering algorithm responsible for grouping the features that are most relevant
for detecting a violation. The information about the relevant features is then
used to navigate the taxonomy and get a simplified taxonomy of these relevant
features.

Our experiments describe how the ML model was built based on the training
data provided by Wikipedia, and the results of applying this model to the task
of vandalism detection in Wikipedia’s article edits illustrate how our approach
can reach a precision of 78,1% and a recall of 63,8%. Besides, the results also
show that our framework can provide information about the specific group of
features that affect the probability of an action being considered a violation, and
we make use of this information to provide feedback to the user on their actions.

The remainder of this paper is divided as follows. Section 2 presents the basic
mechanisms used by our proposed framework. Section 3 describes our framework,
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while Sect. 4 presents its application to the Wikipedia edits use case, and Sect. 5
presents our experiment and its results. The related literature is presented in
Sect. 6. We then describe our conclusions and future work in Sect. 7.

2 Background

This section aims to present the base concepts upon which this work is built.
We first start with the description of the taxonomy, which we intend to use to
formalize a community’s knowledge about the features of the actions. Next, we
describe the ML algorithms applied to build our framework. First, the Logistic
Model Tree (LMT) algorithm, which is used to build the model responsible for
detecting possible vandalism; and second, the K-Means algorithm, responsible for
grouping the features of the action that are most relevant for detecting violation.

2.1 Taxonomy for Action Representation

In the context of our work, an action (executed by a user in an online community)
is represented by a set of features. Each of these features describes one aspect
of the action being executed, i.e., the composing parts of the action. The goal of
adopting this approach is to equip our system with an adaptive aspect, since by
modelling an action as a set of features allows the system to deal with different
kinds of actions (in different domains). For example, we could map the action of
participating in an online meeting by features, such as: amount of time present
in the meeting; volume of message exchange; and rate of interaction with other
participants. Besides, in the context of norm violation, the proposed approach
can use these features to explain which aspects of an action were problematic.

Defining an action through its features gives information about different
aspects of the action that might have triggered a violation. However, it is still
necessary to find a way to present this information to the violators. The idea
is that this information must be provided in a human-readable way, allowing
the users to understand what that feature means and how different features are
related to each other. With these requirements in mind, we propose the use of
a taxonomy to present this data. This classification scheme provides relevant
information about concepts of a complex domain in a structured way [7], thus
handling the requirements of our solution.

We note that, in this work, the focus is not on building a taxonomy of features.
Instead, we assume that the taxonomy is provided with their associated norms.
Our system uses this taxonomy, navigating it to select the relevant features. The
violator is then informed about the features (presented as a subsection of the
larger taxonomy) that triggered the violation detected by our model.

2.2 Logistic Model Tree

With respect to the domain of detecting norm violations in online communities,
interpreting the ML model is an important aspect to consider. Thus, if a commu-
nity is interested in providing the violator with information about the features
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of their action that are indicative of violation, then the proposed solution needs
to work with a model that can correctly identify these problematic features.

In this work, we are interested in supervised learning, which is the ML task of
finding a map between the input and the output. Several algorithms exist that
implement the concepts of supervised learning, e.g., artificial neural networks
and tree induction. We are most concerned with the ability of these algorithms
to generate interpretable outputs, i.e., how the model explains the reasons for
taking a certain decision. As such, the algorithm we chose that contains this
characteristic is the tree induction algorithm.

The ability to interpret the tree induction model is provided by the way a
path is defined in this technique (basically a set of if-then statements), which
allows our model to find patterns in the data, present the path followed by the
model and consequently provide the reasons that lead to that conclusion.

Although induction trees have been a popular approach to solve classification
problems, this algorithm also presents some disadvantages. This has prompted
Landwehr et al. [10] to propose the Logistic Model Tree (LMT) algorithm, which
adds logistic regression functions at the leaves of the tree.

In logistic regression, there are two types of variables: the independent and
the dependent variables. The goal is to find a model able to describe the effects
of the independent variables on the dependent ones. In our context, the output
of the model is responsible for predicting the probability of an action being
classified as norm violation.

Dealing with odds is an interesting aspect present in logistic regression, since
the increase in a certain variable indicates how the odds changes for the classifica-
tion output, in this case the odds indicate the effect of the independent variables
on the dependent ones. Besides, another important aspect is the equivalence
of the natural log of the odds ratio and the linear function of the independent
variables, represented by Eq. 1:

ln(
p

1 − p
) ← β0 + β1x1 (1)

where ln is the logarithm of the odds ratio, p [0,1] is the probability of an event
occurring. β represents the parameters of the model, in our case the weights for
features of the action. After calculating the natural logarithm, we can then use
the inverse of the function to get our estimated regression equation:

p̂ ← εβ0+β1x1

1+εβ0+β1x1
(2)

where p̂ is the probability estimated by the regression model.
With these characteristics of logistic regression, we can see how this technique

can be used to highlight attributes (independent variables) that have relevant
influence over the output of the classifier probability.

Landwehr et al. [10] demonstrate how neither of the two algorithms described
above (Tree Induction and Logistic Regression) is better than the other. Thus,
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to tackle the issues present in these two algorithms, LMT adds to the leaves of
the tree a logistic regression function.

Figure 1 presents the description of a tree generated by the LMT algorithm.
With a similar process as the standard decision tree, the LMT algorithm obtains
a probability estimation as follow: first, the feature is compared to the value
associated with that node. This step is repeated until the algorithm has reached
a leaf node, when the exploration is completed. Then the logistic regression
function determines the probabilities for the class, as described by Eq. 2.

Fig. 1. An example of a tree built by the LMT algorithm [10]. X1 and X2 are features
present in the dataset. F1 and F2 are the equations found by the logistic regression
model, describing the weights for each feature present in the training dataset.

2.3 K-Means Clustering Method

K-Means is a clustering algorithm with the goal of finding a number K of clus-
ters in the observed data, attempting to group the most ‘similar’ data points
together. This algorithm has been used successfully in different applications,
such as feature learning [15] and computer vision [20]. To achieve this goal,
K-Means clusters the data using the nearest mean to the cluster center (calcu-
lating the squared Euclidean distance), thus reducing the variance within the
group [14].

In this work, the K-Means algorithm can be used to group the features that
may indicate an action as violation (we use the features’ weights multiplied by
their input values as indication of relevance for the classification probability).
First, after detecting a possible violation, the ML model provides the K-Means
algorithm with the set of features present in the logistic regression and their
associated values (the input multiplied by the weight). Then, based on the values
of these features, the algorithm is responsible for separating the features in two
groups: 1) those that our model found with highest values, i.g., the most relevant
for the vandalism classification; and 2) those with the lowest values, e.g., less
relevant for the vandalism classification. Lastly, the output of K-Means informs
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the framework which are the most relevant features for detecting violations (i.e.
the first group), which the framework can then use to navigate the taxonomy
and present a selected simplified taxonomy of relevant features to the violator.

3 Framework for Norm Violation Detection (FNVD)

This section presents the main contribution of our work, the framework for norm
violation detection (FNVD). The goal of this framework is to be deployed in a
normative system so that when a violation is detected, the system can enforce
the norms by, say, prohibiting the action.

The main component of our framework is the machine learning (ML) algo-
rithm behind the detection of norm violations, specifically the LMT algorithm
of Sect. 2.2. An important aspect to take into consideration, when using this
algorithm, is the data needed to train the model. In our work, the community
must provide the definitions of norm violations through a dataset that exempli-
fies actions that were previously labeled as norm violations. Thus, here we are
using data provided by Wikipedia, gathered using Mechanical Turk [13].

After defining the data source, our proposed approach essentially 1) collects
the data used to train the LMT model; 2) trains the LMT model to detect
possible violations and to learn the action’s features relevant to norm violations;
and 3) when violations are detected, according to the LMT model’s results, then
the action responsible for the violation is rejected and the violator is informed
about the features of their action that triggered the model output. Furthermore,
in both cases (when actions are labelled as violating norms or not), we suggest
that the framework collects feedback from the members of the community, which
can then be used as new data to retrain the ML model. This is important as
we strongly believe that communities and their members evolve, and what may
be considered a norm violation today might not be in the future. For example,
imagine a norm that states that hate speech is not allowed. Agreeing on the
features of hate speech may change from one group of people to another and may
also change over time. Consider the evaluation of the N-word, which is usually
seen as a serious racial offense and can automatically be considered a text that
violates the “no hate speech” norm. However, imagine a community of African
Americans frequently saluting each other with the phrase “Wussup nigga” and
the ML model classifying their text as hate speech. Clearly, human communities
do not always have one clear definition of concepts like hate speech, violation,
freedom of speech, etc. The framework, as such, must have a mechanism to adapt
to the views of the members of its community, as well as adapt to the views that
may change over time. While we leave the adaptation part for future work, we
highlight its need in this section, and prepare the framework to deal with such
adaptions, as we illustrate in Fig. 2.

To further clarify how our framework would act to detect a norm violation
when deployed in a community, it is essential to explore the diagram in Fig. 2.
Step 0 represents the training process of the LMT model, which is a fundamental
part of our approach because it is in this moment that the rules for norm violation
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Fig. 2. How the framework works when deployed in an online community.

are specified. Basically, after training the model, our framework would have
identified a set of rules that describe norm violation. We can portray these rules
as a conjunction of two elements: 1) the tree that is built by the LMT algorithm
on top of the collected data; and 2) the weights presented in the leaves of the
tree. These weights are the parameters of the estimated regression equation that
defines the probability of norm violation (depicted in Eq. 2). With the trained
LMT model, the system starts monitoring every new action performed in the
community (Step 1). In Step 2, the system maps the action to features that the
community defined as descriptive of that action, which triggers the LMT model
to start working to detect if that action is violating (or not) any of the norms.
Step 3 presents the two different paths that can be executed by our system. If
the action is detected as violating a norm (Condition 1), then we argue that
the system must execute a sequence of steps to guarantee that the community
norms are not violated: 1) the system does not allow the action to persist (i.e.,
action is not executed); 2) the system presents to the user information about
which action features were the most relevant for our model to detect the norm
violation, and the taxonomy of the relevant features is presented; 3) the action
is logged by the system, allowing other community members to give feedback
about the edit attempt, thus providing the possibility of these members flagging
the action as a non-violation. The feedback collected from the users can later be
used to continuously train (Step 0) our LMT model (future work). However, if
the executed action is not detected as violating a norm (Condition 2), then the
system can proceed as follows. The action persists in the system (i.e., action is
executed), and since any model may incorrectly classify some norm violation as
non-violation, the system allows the members of the community to give feedback
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about that action, providing the possibility of flagging an already accepted action
as a violation. Getting people’s feedback on violations that go unnoticed by the
model is a way to allow the system to adapt to new data (people’s feedback)
and update the definitions of norm violations by continuously training the LMT
model (Step 0).

To obtain the relevant features for the norm violation classification (Condi-
tion 1), we use the K-Means algorithm. In our context, due to the estimated
logistic regression equation, the LMT model provides the weights for each fea-
ture multiplied by the value of these features for the action. This indicates the
influence of the features on the model’s output (i.e., the probability of an action
being classified as norm violation). With the weights and specific values for the
features, the K-Means algorithm can group the set of features that present the
highest multiplied values, which are the ones we assume that contribute the most
for the probability of norm violation. Then, by searching the taxonomy using
the group of relevant features, our system can provide the taxonomy structure
of the features that trigger norm violation, this is useful due to the explana-
tory and interpretation characteristics of a taxonomy. The aim of providing this
information is to clarify to the member of the community performing the action,
what are the problematic aspects of their action as learned by our model.

4 The Wikipedia Vandalism Detection Use Case

We focus on the problem of detecting vandalism in Wikipedia article edits. This
use case is interesting because Wikipedia is an online community where norms
such as ‘no vandalism’ may have different interpretations by different people. In
what follows, we first present the use case’s domain, followed by the taxonomy
used by our system, and finally, an illustration of how our proposed framework
may be applied to this use case.

4.1 Domain

Wikipedia [18] is an online encyclopedia, containing articles about different sub-
jects in any area of knowledge. It is free to read and edit, thus any person with
a device connected to the internet can access it and edit its articles. Due to
the openness and collaborative structure of Wikipedia, the system is subject to
different interpretations of what is the community’s expectation concerning how
content should be edited. To help address this issue, Wikipedia has compiled a
set of rules, the Wikipedia norms [13], to maintain and organize its content.

Since we are looking for an automated solution for detecting norm violations
by applying machine learning mechanisms, the availability of data becomes cru-
cial. Wikipedia provides data on what edits are marked as vandalism, where
vandalism annotations were provided by Amazon’s Mechanical Turk. Basically,
every article edit was evaluated by at least three people (Mechanical Turks) that
decided whether the edit violates the ‘no vandalism’ norm or not. In the context
of our work, the actions performed by the members of the community are the
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Wikipedia users’ attempts to edit articles, and the norm is “Do not engage in
vandalism behavior” (which we refer to as the ‘no vandalism’ norm). It is this
precise dataset that we have used to train the model that detects norm viola-
tions. We present an example of what is considered a vandalism in a Wikipedia
article edit, where a user edited an article by adding the following text: “Bugger
all in the subject of health ect.”

4.2 Taxonomy Associated with Wikipedia’s ‘No Vandalism’ Norm

An important step in our work is to map actions to features and then specify how
they are linked to each other. We manually created a taxonomy to describe these
features by separating them in categories that describe their relation with the
action.1 In this work, we consider the 58 features described in [17] and 3 more
that were available in the provided dataset: LANG MARKUP IMPACT, the mea-
sure of the addition/removal ofWiki syntax/markup; LANG EN PROFANE BIG
and LANG EN PROFANE BIG IMPACT, the measure of addition/removal of
English profane words. In the dataset, features ending with IMPACT are nor-
malized by the difference of the article size after edition. The main objective of
this taxonomy is to help our system present to the violator an easy-to-read expla-
nation of the reasons why their article edit was marked as violating a norm by our
model, specifying the features with highest influence to trigger this violation.

To further explain our taxonomy approach, we present in Fig. 3 the con-
structed taxonomy for Wikipedia’s ‘no vandalism’ norm. We observe that fea-
tures can be divided in four main groups. The first is user’s direct actions, which
represent aspects of the user’s article editing action, e.g., adding a text. This
group is further divided in four sub-groups: a) written edition, which contains
features about the text itself that is being edited by the user; b) comment on
the edition, which contains features about the comments that users have left
on that edition; c) article after edition, which contains features about how the
edited article changed after the edition was completed; and d) time of edition,
which contains features about the time when the user made their edition. The
second group is the user’s profile, general information about the user. The third
is the page’s history, how the article changed with past editions. The last group
is reversions, which is essentially information on past reversions.2 In total, these
groups have 61 features, but due to simplification purpose, Table 1 only presents
a subset of those features.

4.3 FNVD Applied to Wikipedia Vandalism Detection

It this section, we first describe an example of how our framework can be config-
ured to be deployed in the Wikipedia community. First, the community provides
the features and the taxonomy describing that feature space (see Fig. 3). Then,

1 For the complete taxonomy, the reader can refer to https://bit.ly/3sQFhQz.
2 A reversion is when an article is reverted back to a version before the vandalism

occurred.

https://bit.ly/3sQFhQz
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Fig. 3. Taxonomy associated with Wikipedia’s ‘no vandalism’ norm.

Table 1. Example of Features present in the taxonomy groups.

Group Features

Written edition LANG ALL ALPHA; LANG EN PRONOUN

Comment on edition COMM LEN; COMM LEN NO SECT

Article after edition SIZE CHANGE RESULT; SIZE CHANGE CHARS

Time of edition TIME TOD; TIME DOW

User’s profile HIST REP COUNTRY; USER EDITS DENSITY

Page’s history PAGE AGE; WT NO DELAY

Reversions HASH REVERTED; HASH IP REVERT

our framework trains the LMT model to classify norm violations based on the
data provided (Step 0 of Fig. 2), which must contain examples of what that
community understands as norm violation and regular behavior.

In the context of vandalism detection on Wikipedia, the relevant actions
performed by the members of the community are the attempts to edit Wikipedia
articles. Following the diagram in Fig. 2, when a user attempts to edit an article
(Step 1), our system will analyze this edit. We note here that our proposed LMT
model does not work with the action itself, but the features that describe it. As
such, it is necessary to first find the features that represent the performed action.
Thus, in Step 2, there is a pre-processing phase responsible for mapping actions
to the features associated to the norm in question. For example, an article about
Asteroid was edited with the addition of the text “i like man!!”. After getting
this edition text, the system can compute the values (as described in [17]) for the
61 features, which are used to calculate the vandalism probability. For brevity
reasons, we only show the values for some of these features:

1. LANG ALL ALPHA, the percentage of text which is alphabetic: 0,615385;
2. WT NO DELAY, the calculated WikiTrust score: 0,731452;
3. HIST REP COUNTRY, measure of how users from the same country as the

editor behaved: 0,155146.

After calculating the values for all features, the LMT model can evaluate
if this article edit is considered ‘vandalism’ or not. In the case of detecting
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vandalism (Condition 1 of Fig. 2), the system does not allow the edition to be
recorded on the Wikipedia article, and it presents to the violator two inputs.
The first is the set of features of their edit that have the highest influence on
the model’s decision to detect the vandalism. To get this set, after calculating
the probability of vandalism (as depicted in Eq. 2), the LMT model provides
the features that present a positive relationship with the output. These ‘positive
features’ are then used by K-Means to create the group with the most relevant
ones (Table 2 presents an example of this process). The second input is the
selected part of the taxonomy related to chosen set of features, providing further
explanation of those features that triggered the norm violation. Additionally,
the system will log the attempt to edit the article, which eventually may trigger
feedback collection that can at a later stage be used to retrain our model.

Table 2. List of features that positively affects the probability of vandalism detection.
Total Value is the multiplication between the feature’s values and the features’ weights.
The most relevant features, as found by K-Means, are marked with an (*).

Features Total value

WT NO DELAY* 1.08254896

HIST REP COUNTRY* 0.899847

LANG ALL ALPHA* 0.7261543

HASH REC DIVERSITY 0.15714292

WT DELAYED 0.12748878

LANG ALL CHAR REP 0.12

HIST REP ARTICLE 0.093548

The features WT NO DELAY , HIST REP COUNTRY and LANG ALL
ALPHA were indicated by K-Means as the most relevant for the classification of

vandalism. With this information, our framework can search the taxonomy for the
relevant features and then automatically retrieve the simplified taxonomy struc-
ture for these three specific features, as shown in Fig. 4.

Fig. 4. Taxonomy for part of the features that were most relevant for the vandalism
classification. These features are then presented to the user with a descriptive text.
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However, in case the system classifies the article edit as ‘non-vandalism’ (Con-
dition 2 of Fig. 2), the Wikipedia article is updated according to the user’s arti-
cle edit and community members may provide feedback on this new article edit,
which may later be used to retrain our model (as explained in Sect. 3).

5 Experiments and Results

The goal of this section is to describe how the proposed approach was applied
for detecting norm violation in the domain of Wikipedia article edits, with an
initial attempt to improve the interactions in online communities. Then, we
demonstrate and discuss the results achieved.

5.1 Experiments

Data on vandalism detection in Wikipedia articles [17] were used for the experi-
ments. This dataset has 61 features and 32,439 instances for training (with 2,394
examples of vandalism editions and 30,045 examples of regular editions). The
model was trained with WEKA [19] and evaluated using 10 folds cross-validation.

Fig. 5. The built model for the vandalism detection, using Logistic Model Tree.

5.2 Results

The first important information to note is how the LMT model performs when
classifying vandalism in Wikipedia editions. In Fig. 5, it is possible to see the
model that was built to perform the classification task.3 The tree has four deci-
sion nodes and five leaves in total. Since the LMT model uses logistic regression
3 Trained model available at: https://bit.ly/3gBBkwP.

https://bit.ly/3gBBkwP
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at the leaves, the model has five different estimated logistic regression equations,
each of these equations outputs’ the probability of an edition being a vandalism.

The LMT model correctly classifies 96% of instances in general. However,
when we separate the results in two groups, vandalism editions and regular
editions, it is possible to observe a difference in the model’s performance. For
the regular editions, the LMT model achieves a precision of 97,2%, and a recall
of 98,6%. While for vandalism editions, the performance of the model drops,
with a precision of 78,1% and a recall of 63,8%. This decrease can be explained
by how the dataset was separated and the number of vandalism instances, which
consequently leads to an unbalanced dataset. In the dataset, the total number
of vandalism instances is 2,394 and the other 30,045 instances are of regular
editions. A better balance between the number of vandalism editions and regular
edition should improve our classifier, thus in the future we are exploring other
model configurations (e.g., ensemble models) to handle data imbalance.

Fig. 6. Number of occurrences of relevant features in vandalism detection.

The influence of each feature on determining the probability of a norm viola-
tion is provided by the LMT model (as assumed in this work, feature influence is
model specific, meaning that a different model can find a different set of relevant
features). The graph in Fig. 6 shows the number of times a feature is classified
as relevant by the built model. Some features appear in most of the observa-
tions, indicating how important they are to detect vandalism. Future work shall
investigate if this same behavior (some features present in the actions have more
influence than other features to define the norm violation probability) can be
detected in other domains.

“LANG ALL ALPHA” recurrently appears as relevant when vandalism is
detected. This happens because this feature presents, as estimated by the LMT
model, a positive relationship with the norm violation, meaning that when a
vandalism edition is detected, this feature is usually relevant for the classification.



140 T. Freitas dos Santos et al.

6 Related Work

In this section, we present the most relevant works related to that reported in this
paper. Specifically, we reference the relevant literature that uses ML solutions
to learn the meaning of a violation, then use that to detect violations in online
communities. In addition to the specific works presented below, it is also worth
to mention a survey that studies a variety of research in the area, focusing on
norm violation detection in the domains of hate speech and cyberbullying [2].

Also investigating norm violation in Wikipedia but using the dataset from
the comments on talk page edits, Anand and Eswari [3] present a Deep Learning
(DL) approach to classify a comment as abusive or not. Although the use of DL
is an interesting approach to norm violation detection, we focus on offering inter-
pretability, i.e., providing features our model found as relevant for the detection
of norm violation. While the DL model in [3] does not provide such information.

The work by Cherian et al. [5] explores norm violation on the Stack Overflow
(SO) community. This violation is studied by analyzing the comments posted
on the site, which can contain hate speech and abusive language. The authors
state that the SO community could become less toxic by identifying and mini-
mizing this kind of behavior, which they separate in two main groups: generic
norms and SO specific norms. There are two important similarities between our
works: 1) both studies use labeled dataset from the community, considering the
relevant context; and 2) the norm violation detection workflow. The main differ-
ence is that we focus on the interpretation of the reasons that indicate a norm
violation as detected by our model, providing information to the user so they
can decide which specific features they are changing. This is possible because
we are mapping the actions into features, while Cheriyan at al. [5] work directly
with the text from the comments, which allows them to focus on providing text
alternatives to how the user should write their comment.

Chandrasekaran et al. [4] build a system for comment moderation in Reddit,
named Crossmod. Crossmod is described as a sociotechnical moderation system
designed using participatory methods (interview with Reddit moderators). To
detect norm violation, Crossmod uses a ML back-end, formed by an ensemble of
classifiers. Since there is an ensemble of classifiers, the ML back-end was trained
using the concept of cross-community learning, which uses data from different
communities to detect violation in a specific target community. Like our work,
Crossmod uses labeled data from the community to train the classifiers and the
norm violation detection workflow follows the same pattern. However, different
from our approach, Chandrasekaran et al. [4] use textual data directly, not map-
ping to features. Besides, Crossmod do not provide to the user information on
the parts of the action that triggered the violation classifier.

Considering another type of ML algorithm, Di Capua et al. [6] build a solution
based on Natural Language Processing (NLP) and Self-Oganizing Map (SOM) to
automatically detect bullying behavior on social networks. The authors decided
to use an unsupervised learning algorithm because they wanted to avoid the
manual work of labeling the data, the assumption is that the dataset is huge
and by avoiding manual labelling, they would also avoid imposing a priori bias
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about the possible classes. This differs from our assumptions since we regard the
data/feedback from the community as the basis to deal with norm violation.

One interesting aspect about these studies is that they are either in the realm
of hate speech or cyberbullying, which can be understood as a sub-group of norm
violation by formalizing hate speech and cyberbullying in terms of norms that
a community should adhere to. Researchers are interested in these fields mainly
due to the damage that violating these norms can cause in the members of an
online community, and due to the available data to study these communities.

7 Conclusion and Future Work

The proposed framework, combining machine learning (Logistic Model Trees and
K-Means) and taxonomy exploration, is an initial approach on how to detect
norm violations. In this paper, we focused on the issue of norm violation assum-
ing violations may occur due to misunderstandings of norms originated by the
diverse ways people interpret norms in an online community. To study norm
violation, our work used a dataset from Wikipedia’s vandalism edition, which
contains data about Wikipedia article edits that were considered vandalism.

The framework described in this work is a first step towards detecting van-
dalism, and it provides relevant information about the problems (features) of the
action that led to vandalism. Further investigation is still needed to get a mea-
sure of how our system would improve the interactions in an online community.
The experiments conducted in our work show that our ML model has a precision
of 78,1% and a recall of 63,8% when classifying data describing vandalism.

Future work is going to focus on the use of feedback from the community
members to continuously train our ML model, as explained in Sect. 3. The idea
is to apply an online training approach to our framework, so when a community
behavior changes, that would be taken to indicate a new view on the rules
defining the norm, and our ML model should adapt to this new view.

Throughout this investigation, we have noticed that the literature mostly
deals with norm violation that focus either on hate speech or cyberbullying.
We aim that our approach can be applied to other domains (not only textual),
thus we are planning to explore domains with different actions to analyze how
our framework deals with a different context (since these domains would have a
different set of actions to be executed in an online community).
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Abstract. It has been argued that one role of social constructs, such
as institutions, trust and norms, is to coordinate the expectations of
autonomous entities in order to resolve collective action situations (such
as collective risk dilemmas) through the coordination of behaviour. While
much work has addressed the formal representation of these social con-
structs, in this paper we focus specifically on the formal representation
of, and associated reasoning with, the expectations themselves. In par-
ticular, we investigate how explicit reasoning about expectations can
be used to encode both traditional game theory solution concepts and
social mechanisms for the social dilemma situation. We use the Collective
Action Simulation Platform (CASP) to model a collective risk dilemma
based on a flood plain scenario and show how using expectations in the
reasoning mechanisms of the agents making decisions supports the choice
of cooperative behaviour.

Keywords: Collective action · Social dilemmas · Event calculus ·
Expectations

1 Introduction

Collective action takes place when a group of people come together to act in
certain ways that will benefit the group as a whole [17]. People have different
characteristics—some are more willing to achieve collective benefits rather than
their own. In addition, social norms [21], reputation, trust and reciprocity moti-
vate individuals to cooperate [22]. Collective action often fails when individuals
are not interested in cooperating or coordinating with each other because there
is a conflict between self-interest and collective interest. Thus, individuals pur-
sue their own interests rather than long-term cooperation [20] and ultimately
no benefit of collective action occurs [8]. For example, the free-rider problem is
a type of social dilemma. A free-rider is someone, who can access a collective
benefit without contributing or incurring any cost [3,11].

Collective action or social dilemmas are well-known problems, which have
been analysed in many studies using the method of game theory. Simple game
c© Springer Nature Switzerland AG 2022
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theory models of social dilemmas predict that cooperation is not rational. How-
ever, human society suggests that cooperation can occur due to psychological
and social motivations such as benevolence and social norms [2], internal moti-
vations (e.g. altruism, fairness norms), rational expectations (e.g. focal points),
and social choice mechanisms (e.g. voting and bargaining) [13].

Game theory is predicated on solution concepts such as the Nash Equilibrium.
This becomes complex to reason about for a large number of agents and does
not seem realistic as a method of human reasoning. In particular, there is a lack
of consideration of the (bounded) reasoning processes that can lead community
members to participate in collective action [27].

Unlike game theory, which assumes that the problem has already been
encoded into a concise representation based on payoffs, we aim to develop a
generic computational mechanism that can be customised to individual prob-
lems by using explicit representations of social knowledge. We posit that this
knowledge can often be encoded in the form of expectations, and thus wish to
investigate the role of social expectations in agent-reasoning mechanisms when
faced with collective action problems. Here we investigate how agents might
explicitly reason about social knowledge to generate cooperative behaviour in
social dilemma situations.

Game theoretic approaches require the agent to understand the strategic
structure of the ‘game’ in the form of matrix (for a normal form game) or tree
(for extended form of game) [24]. For simple standard forms of games (e.g.,
the Prisoner’s Dilemma) it is reasonable to assume that an agent can infer the
game structure and payoffs. However, while various forms of expectation have
been modelled using game theory, for example, the Confidence game [10], where
payoffs depend on agents’ beliefs that represent expectations, the plain-plateau
scenario [14], where a credible commitments creates an expectation, and the
Bravery game [10], where bold and timid decision-making creates expectations,
we think these are less amenable to a utility-based encoding inferred by an agent
(rather than a programmer).

As an alternative, or additional, form of reasoning, we believe that maintain-
ing explicit representations of expectations, and their fulfilment and violation,
will allow generic (scenario-specific) reasoning mechanisms to be developed, such
as those discussed here: the selection between alternative game structures based
on credible commitments (Sect. 2) and moving away from utilities in favour of
agent strategies that choose between expectation-violating and non-expectation-
violating actions (Sect. 5).

Social expectations can play an important role in allowing cooperation to
occur [6]. In this area, Pitt et al. have developed a computational model for self-
governance of common-pool resources based on Ostrom’s principles [25]. Ostrom
and Ahn [23] also investigated three forms of social mechanisms that seem to
foster cooperation in collective action problems: those forms are trustworthiness,
social network connections and the observed conformance.

To investigate the use of reasoning about expectations to resolve a social
dilemma, we model the plain-plateau scenario using the Collective Action
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Simulation Platform (CASP) [6] and demonstrate how its support for
expectation-based reasoning allows cooperation to take place in this scenario.

The structure of this paper is as follows. In Sect. 2 we describe the plain-
plateau scenario. Section 3 highlights the related concepts and platform. Section 4
describes the modelling of the plain-plateau scenario using CASP. Section 5
describes the norm-based solution to the plain-plateau scenario. The outline
of a potential team reasoning approach to the plain-plateau scenario is discussed
in Sect. 6. Section 7 discusses future work and concludes the paper.

2 The Plain-Plateau Scenario

Klein [14] introduced a scenario that we refer to as the plain-plateau scenario. In
this scenario, the objective of the author was to show how it can be rational for
a government to restrict its future choices. The scenario models a society where
people can choose to live in a river plain where they can access water easily;
otherwise, they can live on a plateau. When living in the river plain, there is a
risk of flooding. The government’s objective is to maximize the collective utility
of the citizens. Klein models each citizen’s utility as a concave (logarithmic)
function of their wealth and house value. Therefore in this scenario when the
government has full discretionary power (the “discretionary regime”), there is
common knowledge that it is in the government’s best interest to compensate
citizens whose houses have flood damage by taxing citizens living on the plateau.
Thus, citizens who live in the flood plain and suffer due to flood damage can
expect to be bailed out by the government. Klein shows that this leads to a
prisoner’s dilemma game between the citizens, where choosing the plateau is
cooperation and choosing the plain is defection.

To avoid the prisoner’s dilemma situation, the government can adopt the
“rule-based regime” where it removes its own discretionary ability to provide
compensation. This can be seen as a binding announcement that the government
will not bail out any citizens who have flood damage. In this case, the government
will have no reason to tax citizens who are living on the plateau. Therefore, this
announcement avoids the prisoner’s dilemma.

Sequence of Events. Figure 1 shows the occurrence of the events in the plain-
plateau scenario. There are multiple rounds in which citizens choose where to
live. Within each round, the events are as follows: ‘receive income’ is the first
step, in which citizens receive wealth. The next step ‘choose location’ is when
agents choose a location to live in (the scenario assumes that their houses can
be easily moved). Next there is a possible flood occurrence with probability p.
After a flood occurs, if the government has discretionary power then it will tax
and compensate for flood damage; however, if the government is following the
rule-based regime then there is no compensation. In the next step citizens can
repair their houses if they have flood damage. Finally, citizens can consume the
remaining money at the ‘consume’ step.
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Cycle of events

C:
Repair damage

C:
Consume

N:
Occurrence of

flood
with probability p

C:
Choose location

C:
Receive income

G:
If Discretionary
regime & flood

occurred

Tax &
Compensate

G: Government

C: Citizen

N: Nature Plain

Plateau

G:
If Rule-based regime

& flood occurred

No
Compensation

Fig. 1. Sequence of events in the plain-plateau scenario

Although the plain-plateau scenario is, in general, an n-person game, Klein
models this as an extensive form game with two players [14] as illustrated in Fig. 2.
This scenario involves the government and two citizens, citizen 1 and citizen 2,
and two action choices, plain and plateau. In this figure, single arrows define the
strategies under the rule-based regime and double arrows show strategies under
the discretionary regime. At state 2, the decision nodes for citizen 2 form a single
information state, i. e. citizen 2 is not aware of what choice was made by citizen 1.
When under the full discretionary power of the government, citizens are better off
to live on the plain as the government’s rational choice is to redistribute income to
compensate for damage. Given Klein’s specific values for periodic income, house
values on the plain and plateau, the probability of a flood, and the amount of flood
damage, the government’s payoff (social utility) is then 0.666. On the other hand
when the government follows the rule-based regime, citizens are better to move to
the plateau position and the government’s payoff is 0.730.

A Nash equilibrium is “a set of strategies, one for each of the n players of
a game, that has the property that each player’s choice is his best response
to the choices of the n − 1 other players” [12]. It is interpreted as a potential
stable point resulting from agents adjusting their behaviour to search for strategy
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0.730
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0.365
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0.708
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don't  
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Plain

Fig. 2. Extensive form of plain-plateau game Payoffs are listed in the order: ruler,
citizen 1, citizen 2. Single arrows show strategies under the rule-based regime. Double
arrows show strategies under the discretionary-based regime, redraw from [14].

choices that will give them better results. In particular, a Nash equilibrium is a
self-enforcing agreement, which does not need any external power, because due
to self-interest, players will follow the agreement if others do.

The prisoner’s dilemma game is a paradox in decision analysis, which shows
why two completely rational individuals will not cooperate, even though they
would be better off to do so if both of them made that choice [7]. In this game,
the highest reward for each party occurs when both players choose to cooperate.
However purely rational individuals in the prisoner’s dilemma game will defect on
each other [7]. Figure 3(a) shows that the discretionary power of the government
leads to a prisoner’s dilemma situation with the Nash equilibrium (plain, plain)
and payoffs (0.333, 0.333) even though there will be no plateau-dweller for the
government to tax. On the other hand, Fig. 3(b) shows that the expectation of
citizens under the rule-based regime of the government changes the game to one
with a different Nash value, (plateau, plateau) and the payoffs (0.365, 0.365).

Fig. 3. (a) The prisoner’s dilemma game under the discretionary regime and Nash
equilibrium (plain, plain) and payoff (0.333, 0.333) [14]. (b) The game under the rule-
based regime with Nash equilibrium (plateau, plateau) and payoff (0.365, 0.365)
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3 Related Concepts and the CASP Platform

The objective of this study is to model and solve the social dilemmas based on
the expectations of the agents. This section introduces relevant concepts and
tools. We use the CASP platform which is an extension of the Repast Simphony
agent-based simulation tool that incorporates an event calculus engine to reason
about the physical and social effects of actions.

3.1 The Event Calculus (EC)

We use the Event Calculus to model the effects of events in the plain-plateau
scenario—both physical (e.g. damage resulting from flooding) and social (e.g. the
conditional expectation resulting from a government’s credible commitment that
in the case of flooding no bail-outs will occur). The Event Calculus (EC) is a
logical language and deductive mechanism to model the effects of actions on
information about the state of the world [6,15]. Figure 4 illustrates how the
Event Calculus enables a form of reasoning known as temporal projection. This
logical language refers to “what’s true when given what happens when and what
actions do” [28]. In the figure, the “what happened when” is a narrative of events
(e.g. HappensAt(A,T)) and “what fluents hold initially” and “how events affect
fluents” are represented by the vocabulary of the Event Calculus (e.g. Initially(F),
Initiates(A,F,T) and Terminates(A,F,T)).

Fig. 4. Overview of reasoning with the Event Calculus

The Event Calculus models fluents and events. A fluent is a “quantity such
as ‘the temperature in the room’ whose numerical value is subject to variation”
[28]. In our work, fluents are Boolean, e.g. damage(Agent, Amount). The EC
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contains an inertia principle, which specifies that the value of a fluent remains
the same until an event occurs that changes the value.

In this work, we have represented both physical state and social knowledge
using a form of the Event Calculus that has discrete time steps [18]. Within the
discrete time points we are able to assign labels to states. Moreover, the EC is
extended with the notion of expectations, and their fulfilment and violation [5].

3.2 Expectations

An expectation is a future-directed belief that an agent has an active interest
in monitoring [4]. Expectations may be inferred from obligations, commitments,
credible announcements, experience, etc. For example, in a circus, a ringmaster
may expect his acrobats to form a tower-shaped structure. He needs to know
whether his expectation is true or not in future, because he has the liability to
entertain the audience. In this scenario his belief about his acrobats creates his
expectation.

We model expectations based on the logic of Cranefield [5]. We define a fluent
exp rule(Cond ,Exp) to state the existence of a conditional rule of expectation:
Cond represents a condition on the past and present, and constraint Exp is an
expectation regarding the future. If Cond holds then the formula Exp is expected.
Cond and Exp are formed from fluents, event occurrences denoted happ(Events),
Boolean operators, and (for Exp only) Linear Temporal Logic operators e. g. ©
(next), ♦ (eventually) and � (always). A fluent of the form @L can also be used
to test if the current state is associated with the label L. We use labels to model
the steps within each cycle in the plain-plateau scenario (e.g. ‘receive income’
and ‘change location’).

When the condition of an exp rule fluent is true, the expectation Exp becomes
active, denoted by a fluent exp(Exp). An expectation records a state of affairs
that is expected to occur, but may not. This will be considered fulfilled or vio-
lated if the expectation evaluates to true or (respectively) false in the current or
a future state [26]. When this occurs, the Event Calculus engine asserts a fulf
or viol event to the narrative. Exp may contain temporal operators, so its truth
may not be known in the current state. However, it may be able to be partially
evaluated. Suppose exp(p ∧ ©q) holds in the current state (time t), i. e. p ∧ ©q
is expected where p and q are fluents. If p holds at t then at the next time point
t + 1, the formula exp(q) holds. In other words, q is expected to hold at t + 1.

Our Event Calculus implementation provides a what-if predicate that takes
two alternative event lists (E1 and E2) as arguments and considers, in turn, what
fluents and violation and fulfilment events would occur if each list of events were
to occur at the current timepoint. It instantiates two output arguments: the
consequences that will result from the occurrence of E1 but not E2, and those
that will result from E2 but not E1. This can be used as a simple form of look-
ahead to help an agent choose between two actions.
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3.3 The Collective Action Simulation Platform (CASP)

To simulate agent decision-making with knowledge-based expectations, we use
the Collective Action Simulation Platform (CASP), which is an extension of
the Java-based Repast Simphony simulation platform [19]. This allows us to
model the effects of actions using a version of the Discrete Event Calculus [18]
implemented in Prolog. It is enhanced by the logic of expectations described
above.

Agents can take on roles in an institution by asserting to Prolog that certain
institution-related events have occurred: joining an institution, adding a role,
changing roles and dropping a role. CASP detects these new events in the Event
Calculus narrative, and loads a set of rules associated with each current role
into a rule engine1 associated with each agent. When the rule engine is run
at the start of a simulation step, these rules recommend the actions that are
relevant to the agent’s current role, given the current state (as determined by
the rules’ conditions, which may query both the Event Calculus state and the
agent’s instance variables in Java). Then the agent can run scenario-specific code
to select one of the actions to perform [6]. Both decisions may involve querying
the current state recorded in the Event Calculus engine. In this work, we have
modelled the plain-plateau scenario using CASP.2

4 Modelling the Plain-Plateau Scenario Using CASP

In this section of the paper, we investigate how expectation-based reasoning
supports various stages of decision-making in the plain-plateau scenario.

Within the scenario we have two types of agents, Government and Citizen,
and there are two institutions, Government and Citizens. The Citizens institu-
tion has roles Plain-dweller and Plateau-dweller, which determine the actions
available to the agents in these two locations, plain and plateau. The Govern-
ment institution has the roles Discretionary regime and Rule-based regime.

Information about the agents, their institutions, roles and their possible
actions in the simulation is presented in Table 1. If the government has the rule-
based regime role, then it will perform no action (and specifically no taxation
and compensation). If the government has the discretionary regime role then its
possible actions are to compensate citizens whose houses have been damaged due
to flooding by taxing citizens who are living on the plateau. If a citizen has the
role plateau-dweller, then the citizen can stay in that role or change to the plain-
dweller role to stay in the plain. If a citizen changes role from plateau-dweller
to plain-dweller and due to flooding gets damage, then he/she will repair their
damage. On the other hand, when the citizen has the role plain-dweller after
joining the institution, the citizen either can stay in that role or change to the
plateau-dweller role to stay on the plateau. The physical effect of changing a

1 https://github.com/maxant/rules.
2 Source code can be found at https://github.com/abira-sengupta/casp-Plain Plat

eau 2021.

https://github.com/maxant/rules
https://github.com/abira-sengupta/casp-Plain_Plateau_2021
https://github.com/abira-sengupta/casp-Plain_Plateau_2021
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Table 1. Roles and actions in the plain-plateau Scenario

Agent Institution Role Possible actions

Government Government Rule-based regime None

Government Government Discretionary regime Tax and compensate

Citizen Citizens Plateau-dweller Receive income, change
role, consume, stay plain

Citizen Citizens Plain-dweller Receive income, change
role, repair, consume, stay
plateau

villager’s role is modelled by an Event Calculus rule that changes a “location”
fluent. At the beginning of each cycle, a citizen receives income. The citizen
can repair his/her damaged house, and in the end, the citizen can consume the
remaining money.

Here are examples of the EC clauses used in the simulation:

initiates(join(government_agent, government, rulesbasedregimerole),

exp_rule(damage(A,_), not(happ(compensate(A,_)))), _).

This EC clause states that if the government joins the institution government
with the rule-based regime role then this creates an expectation rule, which says
that if a citizen gets damage then there will be no compensation for that citizen.

initiates(receive_income(A,RMoney), wealth(A,NMoney), T) :-
holdsAt(wealth(A,OMoney), T),
NMoney is OMoney + RMoney.

This EC clause updates the wealth fluent for an agent when a
receive_income event occurs. The income is added to the existing wealth.

initiates(change_role(A,citizens, _, citizens_plaindwellerrole),
location(A,plain), T) :-

holdsAt(member(A,citizens), T).

initiates(change_role(A, citizens, _, citizens_plateaudwellerrole),

location(A,plateau), T) :-

holdsAt(member(A,citizens), T).

These EC clauses define the scenario-specific effects of the change_role event
for each citizen. Changing to the citizens_plaindwellerrole causes a citizen’s
location to change to the plain, and changing to citizens_plateaudwellerrole
causes the location to change to the plateau.

initiates(flood, damage(A,D), T) :-
holdsAt(location(A,plain), T),
\+ holdsAt(damage(A,_), T),
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flood_causes_damage(D).

initiates(flood, damage(A,D), T) :-
holdsAt(damage(A,CD), T),
initial_house_on_plain_value(V),
flood_causes_damage(FD),
D is min(FD + CD, V).

terminates(flood, damage(_,_), _).

These EC clauses, the flood event initiates damage for each citizen in the
plain. If no damage already exists, a new damage fluent is created. If there is
an existing damage fluent, the new fluent records the increased damage, up to
the value of the house. Any existing damage fluent is terminated as it is now
replaced with an updated one.

initiates(taxed(A,Tax), wealth(A,New), T) :-
holdsAt(wealth(A,Old), T),
New is Old - Tax.

This EC clause updates the wealth fluent for an agent when a taxed event
occurs. The tax is deducted from the existing wealth.

initiates(compensate(A,Money), wealth(A,New), T) :-
holdsAt(wealth(A,Old), T),
New is Old + Money.

This EC clause defines the compensate event with two arguments, a citizen
agent (A) and money. It initiates a wealth fluent that updates a citizen’s wealth
with the amount of compensation.

initiates(consumed(A), wealth(A,0), _).

This EC clause states that a citizen consumes all the remaining money when
the consumed event occurs. The three clauses above have accompanying termi-
nates clauses to remove existing fluents recording damage (for the flood event)
and wealth (for taxed and compensate events).

Figure 5 shows how expectations are used in the simulation. At the begin-
ning of the simulation, the government can join the institution either with the
rule-based regime role or the discretionary regime role. If the government joins
the institution with the rule-based regime role, then an Event Calculus rule
initiates an expectation rule for all citizens as shown above, labelled ‘exp-rule
1’ in the figure. This expectation rule states that if any citizen gets damage
(damage(A, )) then it is expected that no compensation will be made for that
citizen (not(happ(compensate(A, )))). On the other hand if the government has
full discretionary power then there is no expectation rule generated. When citi-
zens are initiated in the simulation, they check for the existence of this expecta-
tion rule. A citizen knows it could be playing one of two possible games. Under
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Fig. 5. Role of expectations in the plain-plateau scenario

the existence of this expectation rule, Game 2 (Fig. 3(b)) will be selected with
the Nash equilibrium (plateau, plateau). Otherwise, Game 1 (Fig. 3(a)) will be
selected with the Nash equilibrium (plain, plain). The Nash equilibrium3 is rep-
resented as a second exp rule fluent, labelled ‘exp-rule 2’. In the diagram we
assume the location is the plateau. After this expectation rule is triggered in the
choosing location step, corresponding expectations will be generated for every
citizen. Here the exp fluents are created with the expected location of plateau for

3 While we currently use the Nash equilibrium of these games to create these expec-
tations, in principle they could be learned from experience.
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citizen 1, and citizen 2. To make its own location decision, each citizen queries
the EC engine for expectations and chooses the most commonly expected loca-
tion. At the flood step, when the flood event occurs it creates the damage flu-
ent for the citizens who moved to the flood plain. In our scenario, citizen 1
gets damage after the flooding step. This fluent triggers exp-rule 1, creating a
no compensation expectation for each affected citizen. Any violations of these
expectations will be computed by our EC engine and could by used by the agents
in this reasoning, e.g. to revise their belief in the government’s commitment not
to compensate flood victims.

Evaluation. Simulating the plain-plateau scenario using CASP confirms that
reasoning with expectations successfully generated the appropriate behaviour:
cooperation under the rule-based regime and defection under the discretionary-
based regime. This illustrates how reasoning about expectations using the Dis-
crete Event Calculus and a simulation tool (CASP) allowed us to experiment
with mechanisms from game theory and behavioural game theory to explain
cooperation resolution of social dilemma using expectations. The explicit rep-
resentations of expectations were used: 1) to model the government’s decision
that no compensation would be possible, and 2) the expected location choice of
other agents.

5 A Norms-Based Solution for the Plain-Plateau Scenario

Klein notes that the rule-based regime is not the only possible mechanism to
promote cooperation in the plain-plateau scenario. In particular, he discusses a
range of possible social mechanisms. From Klein’s suggestions, we are interested
in experimenting with the use of expectations resulting from social norms to
achieve coordination. We propose that an agent uses the Event Calculus to
detect when expectations are violated and fulfilled, which includes considering
the effects of their own actions. This look-ahead uses our what-if mechanism in
the Event Calculus to compare the normative outcomes of two alternative lists
of actions. Currently, our citizen agents are hard-coded to prefer sets of actions
that will cause no violations over those that will. More generally, this decision
could be based on an agent-specific strategy using psychological properties such
as boldness and vengefulness (governing the probability of norm-violation and
punishment), as in Axelrod’s work on the evolution of cooperation [1]. This
would provide a generic approach to collective action through properties that
are transferable across scenarios, leveraging a generic ability to detect potential
norm violations through the Event Calculus enhanced with expectation-based
reasoning without requiring any changes to the code.

In application to the plain-plateau scenario, suppose that the citizens notice
the cost in overall lost utility if anyone chooses to live in the plain4, suffers flood

4 In this paper, we do not consider possible mechanisms for such a norm to emerge,
but instead assume it holds initially.
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damage, and triggers taxation and compensation. A norm may then emerge
stating that no one should live in the plain. This norm can be expressed by the
following expectation rule, stating that no citizen should move to the plain.

exp_rule(member(A,citizen), never(location(A,plain))).

This expectation rule, however, may not be sufficient to encourage citizens
to cooperate. In this situation, we may require a metanorm, stating that if the
norm is violated, any citizen of the institution who moves to the plain can be
expected to be punished by those citizens who remain on the plateau:

exp_rule(and([happ(viol(never(location(A, plain)))),
location(B,plateau)]),

happ(punish(B,A))).

Figure 6 depicts our use of expectations in a simulation of the plain-plateau
scenario in which agents are aware of norm (and metanorm) violations.

Event Calculus initially clauses create the exp rule fluents for the norm and
metanorm above. At each step of the plain-plateau cycle, agents choose between
a pair of actions recommended by one of the roles they hold. The rules of the
plain-dweller and plateau-dweller roles are triggered in the choose location step
of the plain-plateau cycle, and recommend the options of moving or staying.
We add a new role possible-viol-punisher for agents that will consider punishing
violations of the norm. This contains rules to propose punishing all agents in
the plain (if there are any and this agent is on the plateau), or not to punish
them, and these are applicable in a new step of the plain-plateau cycle: con-
sider punishment.

These rules recommend symbolic abstract actions that we can translate to
an institutional action, such as change role. Counts-as relations (stored in the
Prolog database) are used to make these mappings.

Previously, we had two citizen roles: plain-dweller and plateau-dweller. Each
of these roles has rules proposing the action options of staying or moving. We
now have a new role called possible-viol-punisher, which represents agents who
are aware of the metanorm and may choose to punish; it includes rules to propose
punishing or not punishing.

Our event calculus what-if predicate is now used to consider two options:
move or stay, or punish or do not punish (depending on the current step in the
simulation cycle), and determines whether one rule produces a violation while
the other does not, then chooses the non-violating option (or a random choice if
there is no potential violation). If both choices will lead to violation, the cost of
each violation is assessed (using domain-specific knowledge) and the less costly
option is chosen. If the costs are equal, a random choice is made.

Consider, an agent a living on the plateau, and two agents b and c who have
moved to the plain (we assume they are not aware of the norm or do not use our
violation-avoiding action choice mechanism). If a does not have the possible-
viol-punisher role, then no punishment will occur. If a has that role, but the
metanorm does not exist, then neither the punish nor do not punish options will



156 A. Sengupta et al.

Fig. 6. Norm and metanorm of the plain-plateau scenario

result in a violation, so a chooses between them randomly. If we now add the
metanorm, then a will always punish, as the do not punish choice will violate
the metanorm.

6 Toward a Team Reasoning Approach

We are also interested in reasoning with the expectations underlying team rea-
soning [16,29]. We intend to use CASP and the EC to show how agents can
make action decisions based on the common expectation not to achieve their
own individual pay off but instead to achieve the team payoff. Lecouteux [16]
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outlined the following “team reasoning schema” (given here for a two-agent team
in a social dilemma):

– A certain pair of agents are the members of the team.
– Each member identifies with the team.
– Team members must choose between the joint strategies (C,C), (C,D), (D,C)

and (D,D). where C stands for cooperation and D for defection.
– The team prefers a strategy that maximises the collection team payoff: (C,C)
– Each member wants to choose what the team prefers, so each of us should

choose C.

del Corral de Felipe [9] states some properties of group agency that can be
modelled as expectations. For example, membership of a “collective agent”, e.g. a
team, implies commitment to a certain ethos as a reason for thinking and acting
as a team member. In the context of a game theory style interaction defined by
a pay-off matrix, that ethos (as expressed in the team reasoning schema above)
might be for each member to make decisions that optimise the collective team
payoff rather than the individual payoff. This could be expressed by the following
expectation rule:

exp_rule(and([member(Ag, Team, Role), game(Team,G),
team_optimal(Role,G,Act), @action_time]),

happ(Ag,Act))

This states that, for an agent in a team with a specified role, if the team is
playing a given game, and it is optimal for the team for an agent in that role to
perform action Act, then once it is time to act, the agent is expected to perform
Act.5

7 Conclusion and Future Work

In this paper, we have presented an approach to agent-based simulation to show
how cooperation towards collective action can be achieved based on reasoning
about expectations. To present this investigation we have used the CASP simula-
tion framework, which allows agents to query Event Calculus fluents representing
social knowledge during their reasoning.

Currently, in our initial simulation of the plain-plateau scenario (without
norms) the expectation rule expressing the expected locations of citizens was
created at the start of the simulation. This was based on the presence or absence
of the government announcement, leading to knowledge of the game being played
(Fig. 3(a) or (b)), and then the computation of its Nash Equilibrium. In general,
we do not plan to rely on the use of Nash Equilibrium. Expectation rules such as
this can come from other sources, such as advice from other agents, or learning
from observation.

5 This requires a slight extension of our expectation language to allow an actor to be
named in a happ term.
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A feature of our Event Calculus dialect that has not been used in the plain-
plateau simulation so far is the detection of expectation violations and ful-
filments. Consider the no-compensation expectations shown at the bottom of
Fig. 6. If it turns out that compensation is made to any citizen with flood dam-
age, despite these expectations existing, the Event Calculus engine will create
a violation event corresponding to each of these expectations. The agents could
choose to monitor for such violations, which may cause them to revise their
opinion of the game being played between agents. They could then alter the
expectation rule about the location of agents after the next choose location step
(the plain will now be the rational choice). This will in turn, cause them to
choose the plain.

There are several directions for future work. We can find out various solution
concepts to solve the collective action problems in a uniform way. This paper
discussed expectation-based reasoning in the context of a specific scenario. How-
ever, we seek to explore the use of expectation-based reasoning as a general
mechanism that can also model other solutions to social dilemmas, e.g. choices
influenced by social norms, social capital, team reasoning [16] etc. In future work,
we will investigate the role that expectations play in these social mechanisms to
facilitate cooperation in the plain-plateau scenario and in other scenarios.
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