Generalising Axelrod’s metanorm game through
the use of explicit domain-specific norms

Abira Senguptal!, Stephen Cranefield!, and Jeremy Pitt?

! University of Otago, Dunedin, New Zealand
2 Imperial College London
abira.sengupta@postgrad.otago.ac.nz, stephen.cranefield@otago.ac.nz,
j.pitt@imperial.ac.uk

Abstract. Achieving social order in societies of self-interested autonomous
agents is a difficult problem due to lack of trust in the actions of oth-
ers and the temptation to seek rewards at the expense of others. In
human society, social norms play a strong role in fostering cooperative
behaviour—as long as the value of cooperation and the cost of defection
are understood by a large proportion of society. Prior work has shown
the importance of both norms and metanorms (requiring punishment of
defection) to produce and maintain norm-compliant behaviour in a soci-
ety, e.g. as in Axelrod’s approach of learning of individual behavioural
characteristics of boldness and vengefulness. However, much of this work
(including Axelrod’s) uses simplified simulation scenarios in which norms
are implicit in the code or are represented as simple bit strings, which
limits the practical application of these methods for agents that interact
across a range of real-world scenarios with complex norms. This work
presents a generalisation of Axelrod’s approach in which norms are ex-
plicitly represented and agents can choose their actions after performing
what-if reasoning using a version of the event calculus that tracks the
creation, fulfilment and violation of expectations. This approach allows
agents to continually learn and apply their boldness and vengefulness
parameters across multiple scenarios with differing norms. The approach
is illustrated using Axelrod’s scenario as well as a social dilemma from
the behavioural game theory literature.

Keywords: Norms, Expectation Event Calculus, Metanorms game

1 INTRODUCTION

The conflict between social benefit and an individual’s self-interest is a central
challenge in all social relationships as individuals may put their own interests
ahead of those of the society as a whole, often leading to a suboptimal outcome
for all—a situation known as a social dilemma.

Understanding how societies can solve this conflict and achieve cooperation to-
ward the collective good is essential. In a fishing scenario, for example, it is
profitable for a fisherman to catch as many fish as possible, but if everyone is
selfishly doing the same thing, the fishery will eventually run out of fish.

2 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

The question of why people often do cooperate with others remains, despite the
fact that individuals may benefit more from defecting than from cooperating.
The classical game theory literature from the last few decades models social
dilemmas using payoff matrices or trees and solution concepts such as the Nash
equilibrium, while making the assumption that all agents are perfectly rational
and well-informed. However, this becomes intractable to reason about for a large
number of agents

Human society suggests that cooperation can occur due to internal and social
motivations such as altruism, rational expectations (e.g. focal points), social
choice mechanisms (e. g. voting and bargaining) and social norms[8|.

One body of prior work has focused on the role of norm, providing evidence that
social norms play an important role in fostering cooperation. Social norms imply
that members of society should comply with prescribed behaviour while avoiding
proscribed behaviours [14]. Bicchieri explains why agents adhere to social norms,
claiming that a social norm emerges as a result of our expectations of others and
beliefs about their expectations [3]. Axelrod’s use of the norm and metanorm
game illustrates how agents adopt normative behaviour after learning individual
parameters of boldness and vengefulness, where their boldness represents their
propensity to violate norms and vengefulness represents their inclination to pun-
ish others for violating norms [2]. However, his evolutionary study is based on
an implicit representation of norms, which limits its practical use for agents that
interact in a variety of real-world situations with a range of different norms.

In this work, we propose a generalisation of Axelrod’s method where norms are
represented explicitly and agents can choose their course of action after engaging
in what-if reasoning to compare the normative outcomes of alternative actions.
This approach is significant because it enables agents to continuously learn and
apply their boldness and vengefulness parameters across a variety of scenarios
with various norms.

The following is the structure of the paper. Axelrod’s norm and metanorm game-
based scenario is discussed in Section 2. Section 3 emphasises the use of explicit
norms to encode Axelrod’s mechanism. Section 4 depicts the results of general-
isation of Axelrod’s norm and metanorm games, as well as the use of boldness
and vengefulness in other scenarios. The prior event calculus models of norms
are described in Section 5. Section 6 discusses the conclusion and future work.

2 Background of Axelrod’s model

Axelrod’s states that a norm is determined by “how often the action is taken
and just how often someone is punished for not taking it". To represent norms,
[2] develops a game in which players learn the parameters of bravery and venge-
fulness over generations of the population and can choose to deviate from the
norms and metanorms, receiving punishment for their violations. The goal of the
norms investigation is to see how cooperation emerges from norms.

Title Suppressed Due to Excessive Length 3

To explain the players’ strategies Axelrod uses an evolutionary approach which
selects the strategies that are working well for players, while the strategies that
are not working well are discarded. The difference between game theory and evo-
lutionary approaches is that in game theory, players use strategies to determine
payoffs based on their own and others’ choices. In the case of the evolutionary
approach, no rational calculation is required to determine the best strategy. New
strategies are viewed as mutated versions of old ones in this

2.1 The norms game

Axelrod’s norm game follows an evolutionary model in which successful agent
strategies propagate over generations (Figure 1(a)). A strategy is a pair of values
representing the agent’s boldness and vengefulness. Each agent has the option of
defecting by violating a norm, and there is a chance of being observed by other
agents with the probability S, which is drawn individually for each agent from
a uniform distribution ranging . Each of the agents has two decisions to make.

— Agents must decide whether to defect or cooperate based on their boldness
value (B). A defecting agent (when S < B) is one who receives a Temptation
payoff (T = 3) while other agents receive a Hurt payoff (H = —1). If agents
decide to cooperate, no one’s payoff will change.

— If the agent observes others defecting (as determined by the S value), the
agent must decide whether to punish those defectors based on its vengeful-
ness (a probability of punishment). Punishers incur an enforcement cost (E
= —2) every time they punish (p = —9) a defector.

Axelrod’s simulated the norm game five times with 100 generations each with
twenty agents®. Following the utilities of each agent are used to evolve the popu-
lation of agents. Agents with scores greater than to the average population score
plus one standard deviation are reproduced twice in a new generation. Agents
with a score less than the average population score minus one standard devia-
tion are never reproduced in a new generation. Other agents are only reproduced
once*. The initial values of B and V are chosen at random from a uniform dis-
tribution of eight values ranging from 0/7 to 7/7, implemented as a 3 bit string.
During reproduction each bit has a 1% chance of being flipped as a mutation.

2.2 The Metanorm game

Axelrod found that norms alone were not sufficient to sustain norm compliance
in the society. Axelrod therefore introduced the concept of a meta-norm, is the

3 Axelrod uses five runs for a hundred generations to simulate the norm and metanorm
game. However, we follow the recommendation of [6] and use 100 runs.

4 Axelrod does not state how he maintains a fixed population size after applying these
reproduction rules. We follow the approach of [6] involving random sampling when
the new population is too large, and random replication when the population is too
small.

4 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

encouragement for enforcing a norm based on punishment (Figure 1(b)). The
metanorm game includes punishment for those agents who do not punish de-
fectors after observing them defect. The chance of observing an agent who did
not punish observed defectors by each of the other 18 agents (excluding the
defectors). Metapunishers receive Meta-enforcement cost (—2) every time they
meta-punish (—9).

Title Suppressed Due to Excessive Length 5

E : Enforcement cost
P : punishment cost

E' : metapunishment cost
P' : metapunishment cost i =
i:Agent
B : bold
For each agent i % -- u _?jt”?:;ss
Pro%)ability of | _____ S = Uniform (0,1)
being seen
u:i's payoff [__
T : Temptation (3)
______ V : vengefulness
u : utility
-

Payoff of all others |
H : Hurt (1)

Norm game
With probability S
Agent j sees (a)
Agent i Agent j does not
see Agent i
With probability
v
Agent j does not
punish Agent i
_J

With probability S

For each agent
k#ij

Metanorm game
Agent k does not (b)

see j

Agent k sees
Agent j

With probability

Agent k does not
punish j

(a) Axelrod’s evolutionary study’s norm game says if agent i is
bold enough, defect; otherwise, cooperate. If agent j is vengeful enough and sees
defection, punish agent i else do not punish. (b) The metanorm game adds
each observing agent k. Agent k punishes agent j if agent j does not punish
agent i (defector), k sees this, and agent k is vengeful; otherwise, agent k does
not punish.

6 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

Narrative of events
Initially and
formulae

initiates and
terminates
formulae

State labels .
Event calculus axioms

Formula progression of expectations
(linear logic

HoldsAt formulae

Y

label formulae

Creation of expectation fulfilment and
violation events

Complete
state
information

Action theory
(effects of
actions)

Fig. 2: Overview of reasoning in the Expectation Event Calculus

3 ENCODING AXELROD’S MECHANISM USING
EXPLICIT NORMS

To model and generalise Axelrod’s mechanism, we provide an explicit repre-
sentation of norms and a mechanism that can compare alternative actions to
determine which will lead to a norm violation. The expectation event calculus
(EEC), a discrete event calculus extension, provides this capability.

3.1 The Expectation Event Calculus

The event calculus (EC) consists of a set of predicates that are used to encode
information about the occurrence of events and dynamic properties of the state
of the world (known as fluents), as well as a set of axioms that relate these
predicates [13]. This logical language supports various types of reasoning. In
this work, we use it for temporal projection. This takes as input a narrative of
events that are known to occur (expressed using happensAt(E,T), where E is
an event and 7T is a time point) and a domain-specific set of clauses defining
the conditions under which events will initiate and terminate fluents (expressed
using the predicates initiates(E, F,T) and terminates(E, F,T)). The EC axioms
are then used to infer what fluents hold at each time point. By default, fluents
are assumed to have inertia, ie. they hold until explicitly terminated by an event.

The EC, in general, assumes that time is dense, and time points are ordered using
explicit < constraints. In this work, we use the discrete event calculus (DEC),
which assumes that time points are discrete and identified by integers [10].

The expectation event calculus (EEC) [4] is an extension of the DEC that in-
cludes the concepts of expectation, fulfilment, and violation. Expectations are
constraints on the future, expressed in a form of linear temporal logic, that the
agent wishes to monitor. Expectations are free from inertia and instead are auto-
matically progressed from one state to the next, which means they are partially
evaluated and re-expressed in terms of the next time point. During progression,
if they evaluate to true or false, a fulfilment or violation is generated.

Title Suppressed Due to Excessive Length 7

Figure 2 illustrates temporal projection in the EEC. In addition to the standard
features of the DEC, there are two special kinds of fluents: exp rule and exp. A
conditional rule to create expectations is expressed by an exp rule(Cond, Ezp)
fluent. Here, Cond is a condition on the past and/or present, while Fzp represents
the future expectation. Fxp will be expected if Cond holds, in which case an
exp(Fzp) fluent is created. In our implementation of the EEC, the condition can
test for fluents holding, the occurrence of events (expressed using happ(FE), the
presence of a symbolic label L in a state (using the expression @L) and complex
expressions involving conjunctions and linear temporal logic operators such as
next, eventually, always and never can be used. Labels are associated with time
points using the label(L, T') declarations, and are not required to be unique.
To distinguish between basic events in the narrative and the inferred fulfilment
and violation events, we use the predicate happensAtNarrative to declare the
narrative events.

In contrast to the approach of [4], we represent fulfilments and violations as

events rather than fluents, denoted fulf (Cond, Ezp, T, Res) and viol(Cond, Exzp, T, Res),
where Cond and Fxp are the condition and expectation of an expectation rule

that was triggered at time T to create the expectation, and Res is the residual
expectation (after being progressed zero or more times since its creation) at the

time of its fulfilment or violation®.

Our EEC implementation includes a what-if predicate that accepts two alter-
native event lists (E; and E;) as arguments and infers the fluents that would
hold and the events (including violation and fulfilment events) that would occur
if each list of events were performed at the current time point. It returns the
fluents and events that would occur if the events in F; are performed but not
those in Fs, and those that would occur if the events in F5 occur but not those in
F1. This can be used as a basic form of look-ahead to assist an agent in deciding
between two actions, and especially in this work, to compare which (if any) of
two events will cause expectation violations.

3.2 Modelling Axelrod’s scenario with the EEC

We model time as a repeated cycle of steps and associate an EEC label with each
step. We use the event calculus initiates and terminates clauses to define the
effects of events that update an agent’s S value, give payoff to an agent as the
outcome of all agents’ cooperate or defect actions, and punish and metapunish
agents.

We use the EEC within a simulation platform [5] that integrates Repast Sim-
phony [11] with the EEC through queries to SWI Prolog. This includes an insti-
tutional model in which agents take on roles by asserting to the EEC narrative
that certain institution-related events have occurred such as joining an institu-

5 There is also an extended version of the ezp fluent with these four arguments—the
version used in this paper has only the residual expectation as its argument.

8 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

tion and adding a role. Each role has an associated set of conditional rules.
When the rule engine is run at the start of a simulation step (Figure 3), these
rules recommend the actions that are relevant to the agent’s current role based
on queries to the EEC, e. g. to check the current step’s label and the fluents that
currently hold. Then the agent can run scenario-specific code to select one of the
actions to perform.”

In contrast to Axelrod’s implicit representation of a norm and metanorm, our
explicit representation of a norm implies that three norms are at task. In the
metanorm game, each action choice is governed by a norm. As there are three
choice-points, there are three norms that are modelled using ezp rule fluents.

First Order Norm
initially(
exp_rule(member (A, society),
never (happ(defect(A))))).
This initially clause creates an expectation rule (exp rule) express-
ing the first-order norm, which states that no defection should occur for
any agent who is a member of the society.

. J

As the first-order norm described above is likely to be insufficient to motivate
selfish agents to follow the norm and cooperate with others, a second-order norm
is required.

Second Order Norm
initially(
exp_rule(and([sawViolation(B,A,R,_),
pl(contains_term(
defect(A),R))]1),
happ (punish(B,A)))).

The second-order norm requirement states that if the first-order norm
is violated by an agent, and another agent who observes the violation
should punish the first-order norm defector.

\. J

This norm (second-order norm) is triggered by a sawViolation fluent, which is
created when a violation of the first-order norm occurs and defectors observed.
The following initiates clause creates this fluent.

initiates(viol(_,_,_,ResidualExp),
sawViolation(B,A,ResidualExp,T),
T) :-
responsible (ResidualExp, A),
agent (B),

5 https://github.com/maxant /rules
7 At present we assume there are no more than two relevant actions.

Title Suppressed Due to Excessive Length 9

B \== A,
holdsAt(s(A,S), T),
random(R),

R < S.

The condition for this clause first determines which agent is responsible for the
unfulfilled expectation, then generates a possible observer different from the
violator and compares the agent’s S value with a random number to determine
whether or not the violation has been observed.

In our application, the violated expectation will include an instantiation of one
of the action terms defect (A), punish(A) or metapunish(A), and we can these
to identify the responsible agent. We therefore define the responsible predicate
in Prolog as follows.

responsible (Expectation, A) :-
contains_term(defect(A),
Expectation) .

responsible (Expectation, A) :-
contains_term(punish(A,_),
Expectation) .

responsible (Expectation, A) :-
contains_term(metapunish(A,_),
Expectation).

When there are second-order norm violators, a new norm, third-order norm, is
required.

Third Order Norm

initially(
exp_rule(and([sawViolation(B,A,R,_),
pl(contains_term(
punish(A,_),R))]),
happ(metapunish(B,A)))).

According to this EEC rule, observer agents must punish the violators
of the second-order norm when the violating agents fail to punish the
first-order norm defector after observing their defection. The pl term
in the rule’s condition contains a goal to be evaluated using Prolog.

\.

Figure 3(a) and (b) illustrate the differences between our implementation of the
metanorm game with implicit and explicit norms. Figure 3(a) makes hard-coded
action choices, following Axelrod’s algorithm. However, in Figure 3(b), whenever
there is an action choice to be made, the two action choices are compared using
what-if reasoning that is informed by one of the three norms. If one of the choices
will cause violation

10 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

The EEC label “Defect or cooperate" indicates a timestep in which an agent
must decide whether to defect or cooperate based on whether they have a high
boldness value or not (Figure 3(a)). Figure 3(b) shows the first-order norm has
been created by its exp rule in the initial time step and so is active already.
After learning the boldness parameter, agents can use the what-if mechanism
to compare the outcomes of two alternative actions, cooperation or defection. If
the agent’s boldness value exceeds S, the agent will defect or violate the first
order norm; otherwise, the agent will cooperate.

Implicit norm simulation at the “punishment" label, demonstrates how agents are
punishing each observed defector with the probability given by the vengefulness
parameter (Figure 3(a)). Whereas the explicit norm representation simulation
cycle demonstrates second-order norm implementation within the “punishment"
step and how the agent can use the what-if mechanism to punish or do not

punish (Figure 3(b)).

If an agent violates with high boldness at the “punishment" label of the implicit
norm simulation, then an agent with high vengefulness meta-punishes the vio-
lator (Figure 3(a)). However, in our work, we can see how the EEC implements
the third-order norm at “meta_punishment" label and agents use the what-if
mechanism to decide whether or not to meta-punish the defectors (Figure 3(b)).

SO SN
- ~
S: Probability of the agent's defection being seen e ~o
X ~
B_. Boldness of the agent e NA: First Order Norm ~
V: Vengefulness of the agent . N2: Sevont Order orm S
e N3: Third Order Norm .
=P~ .
- ~ ’
Pras RS S
. N 4
’, ~ ’ A
. . S e~ \
’ A " Every four cycles: regenerate population of \

N BV)values__________ \

Awhat-if(cooperate)
defect)

1
1
1
1
1
Choose defect N1
(violating N1) if 1
> 1

B>S
else cooperate A

Cycle of events
in the
generalisation of
the metanorms

game

Meta-punish
observed non-
punishers

Cycle of events
for each agent
of the metanorms

Meta-punish observed
non-punishers with
probability V

Cooperate or
defect

EEC creates
\ | sawViolation fluents.
\ i Choose

| do_not_metapunish

\
| (violating N3) with
‘ i probability 1-V. :
EEC creates sawViolation

N | else metapunish fluents.

H K¥B>S
cooperate
else
L defect

Punish observed
defectors with
probability V

{'Receive Payoff: | ,

Sum of hurt from ’ %‘ Choose do_not_punish ‘&
violations, cost of /o 2, (violating N2) with probability | ’ @
N punishing & cost of PR) 1oV)
7 being punished PR KN else punish N
99 ~ b RS R : .
~ [N
‘4 S~ - ~ = -
s TS<l _ak . S~e -7
s=-- White boxes are run for ~<.) _--"

each agent

Fig.3: The distinction between implicit and explicit metanorms. It
depicts the cycle of events for Axelrod’s metanorms game (a) in its original form
with implicit norms, and (b) in our generalised form with explicit norms.

Title Suppressed Due to Excessive Length 11

Table 1: Roles and their possible actions

Label Role Possible Action

cooperate or defect Temptation Role Cooperate or Defect

punishment Possible punisher Role Punish or Do not punish

metapunishment Possible punisher Role metaPunish or Do not meta-
punish

Figure 4 depicts in more detail our use of explicit norms with agents that are
aware of norm violations. We have three norms represented rules in different
times they triggered and created expectations. The EEC initially clauses gener-
ate the exp rule fluents for the first-order norm (Ni), second-order norm (Nz),
and third-order norm (N3). Each agent has two roles: Temptation role and Possi-
ble punisher role. Table 1 shows what actions an agent can take in the simulation
when assigned to a specific role for each label. Agents with the Temptation role
can choose to cooperate or defect at the “cooperate or defect" label. While at
“punishment" label an agent with possible punisher role can choose to punish or
do not punish, and an agent can choose to metapunish or do not metapunish at
the “metapunishment" label with same “Possible punisher role". At time tick =
1 of the simulation, both roles (Temptation role and Possible punisher role) are
activated.

The EEC what-if predicate is used to consider two options: defect or cooperate,
punish or do not punish, meta-punish or do not meta-punish (depending on the
current step in the simulation cycle), and determine whether one rule produces
a violation while the other does not. The non-violating option is then chosen (or
a random choice if there is no violation). If both options result in a violation,
the cost of each violation is calculated (using domain-specific knowledge) and
the less expensive option is chosen. If the costs are the same, a random selection
is made.

The role Temptation role contains rules to suggest the actions (Table 1) when
the probability of a defection being seen by someone (S value) is less than agent’s
bolduness (B). Where, the role, possible punisher, contains different rules at dif-
ferent labels (i.e. “punishment" and “meta_punishment") to suggest the corre-
sponding actions when agent has high vengefulness value (V).

At the simulation’s final label, “regenerate population", successful agents are
mutated and form a new generation with the same size [6]. In this simulation,
folded outlined arrows represent iteration: one for the three norms and their cor-
responding expectations within one generation, and the other for 100 generations
of simulation.

12 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

| exp(never(happ(defect(agent 1)))) |

At Time =2
(N1:
| exp(never(happ(defect(agent 2)))) |
AtTime=3 | exp(napp(punish(agent 1, agent 2)) |
Norm { 1st Order Norm : N1 N2; —— H
Meta [2nd Order Norm : N2 | exp(happ(punish(agent 1, agent 3))) |
norm L 3rd Order Norm : N3
At Time=4 | exp(happ(metapunish(agent 1, agent 2)))l
N3: ——>
| exp(happ(metapunish(agent 1, agent 2)))l

ion role
label: (choose(cooperate, defect, B))
cooperate or defect what-if

Ci liant Not C liant
omplian /\ ot Complian N1

cooperate defect

Relevant_actions

Possible punisher

hoosel punish drole ¢ punish, 1-V) Choose(Action1, Action2, ViolProb):
) . choose(punish, do_not_punish, 1 -
label: punishment what-if « Calc. V1 = violations Action1 will cause
Compliant / \ Not Compliant « Calc. V2 = violations Action2 will cause
N2 « If V1 and V2 are empty:

Relevant_actions return a random choice

« If V1 and V2 are both non-empty:
calc. viol. cost for V1 and V2
punish do_not_punish Return action with lowest viol. cost
« Otherwise, return the compliant action
with probability 1 - V or the violating
action with probability V

Possible punisher role
choose(meta_punish, do_not_meta-punish, 1 -V)

label: what-if
meta i '/NolCompliam
N3

Ps
Relevant_aclions/pE \

meta-punish do_not_meta-punish Repeated

* Repeated

100 times
New Generation of agents
constant size

Fig.4: The generalisation of Axelrod’s approach in which norms are ex-
plicitly represented and agents can choose their actions based on what-if reason-
ing using expectation event calculus, which tracks the creation, fulfilment, and
violation of expectations.

4 Results

A. Experiment 1: Generalisation of Axelrod’s metanorm game The
simulation of the experiment depicts what happens when agents violate the
second order norm and are metapunished by vengeful agents adhering to the
third order norm. Figure 5(a) shows a scatter plot representation demonstrating
that boldness is always low and vengefulness ranges from high to average. We use
twenty agents, 100 generations, and 100 runs to simulate Axelrod’s generalisation

Title Suppressed Due to Excessive Length 13

7 . L # ¥ o

L sV oy oy Y e

5 < -.‘, . — < < & V4 /

LT

gefuiness
Y
-
~
w
iy
®

¥
il
A
1
Pl

Vengefulness

start_wven

y
7
/

3 4
Boldness start_boldness

Fig. 5: (a) Scatter plot of mean boldness along x-axis wise and mean vengeful-
ness along y-axis wise of generalisation of Axelrod’s study with all three norms.
(b) Vector plot representation of mean boldness and vengefulness.

of explicit norms. The scatter plots generated by the mean value of boldness and
vengefulness in each of 100 runs.

Figure 5(b) depicts the vector representation of the same data set ®. Vectors show
how boldness and vengefulness change across generations in the population. The
results show that what-if reasoning with explicit norms causes the first-order
norm to be largely upheld in the society due to low boldness being maintained.

However, compared to Axelrod’s results with implicit norms, there remains some
moderately low vengefulness values. This may be explained by a limitation of
the rule engine we use: only a single string predetermined string can be returned
as the result of a rule, e. g. “punish”. Thus, when the rule’s condition compare’s
an agent’s vengefulness with a random number, the outcome is either to punish
all or none of the observed violators. In contrast, in Axelrod’s algorithm, each
individual punishment is the result of a different randomise decision. Further
investigation is needed to determine whether this explains the ability for agents
with lower vengefulness to remain in the population.

B. Experiment 2: Using the boldness and vengefulness in other Sce-
nario [9] introduced a scenario that we refer to as the plain-plateau scenario
in our previous work. The scenario depicts a society in which people have the
option of living on a river plain with easy access to water, otherwise, they can
live on a plateau. Flooding is a risk for river-plain residents. When the govern-
ment has complete discretionary power, it is in the government’s best interests to

8 Populations with similar average levels of boldness and vengefulness are grouped
together to create each vector. The end point of each arrow shows the average levels
of these features one generation later.

14 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

compensate citizens whose homes have been flooded by taxing citizens who live
on the plateau, creating a prisoner’s dilemma situation. In previous work [12],
we experimented with the use of social norm-based expectations to achieve co-
ordination where citizen agents are hard-coded to prefer actions that will result
in no violation.

o tizons), |_T0ered :l
- never{Iocztiun(A,plain))).l -plain))).
Initial

O expectation Norm
exp_rule(and([i i , plain)))), i plateau)]), i A))). |
Metanorm
Triggered .
exp(happ(punish(B,A))).
Plain-Plateau scenario: Plain-Plateau scenario: with Boldness & Vengefulness strategy
All Agents are generous, All Agents are not always generous,
select non-violation can select violation or fulfilment

Plateau dweller role
choose(Stay plain, Move plateau) choose(Stay plateau, Move plain)

what-if what-if
choose(Stay plain, Move plateau) choose(Stay plateau, Move plain)

Selected Action [~ _ - Selected Action
RS e what-if what-if
Move Plateau A Stay Plateau Not Compliant s
. ot Compliant Compliant Not Compliant Compliant
Avoid violation

.) Move i =5
Stay plain Move Plain 2

Plain dweller role
Strategy = (Boldness, Vengefulness)

Plain dweller role Plateau dweller role

Plateau plateau
Possible punisher role L) L)
choose(Punish, Do_not_punish) - N ;
whatoif Selected Action | e.g. if bold enough Selected Action | e.g. if not bold enough
Compliant Not Compliant Stay Plain Stay Plateau
L J
punish Do_not_punish | No Violation Possible punishor role
L J choose(Punish, Do_not_punish)
Selected Action what-if Violation
Not Compliant Compliant
No punishment
Do_not_punish punish

" E
Violator
enough
(a)

(b)

Fig.6: (a) The plain-plateau scenario in which agents are hard-coded to
always choose the non-violating actions. (b) The plain-plateau scenario as
an application of our generalised Metanorms game.

Figure 6(a) illustrates this prior work. Each agent has either a plain dweller or a
plateau dweller role, and in each simulation cycle there are two choices: agents
can stay on the plateau or move to the plain. In this scenario, we assume there
exists a norm that no one should live in the plain and a metanorm stating that
plateau dwellers should punish those who live on the plain.

Figure 6(b) illustrate the application of our generalisation of the metanorms
game to this scenario °. We import boldness and vengefulness parameters from
a run of the experiment 1. This simulates an agent finding itself in a new scenario
after having already evolved its personality with respect to norms, and illustrates

9 Currently, we do not include a level 3 norm for the plain-plateau scenario.

Title Suppressed Due to Excessive Length 15

the generality of our approach using explicit norms and what-if reasoning. In the
plain-dweller role, the EEC what-if predicate is used to consider two options:
move to the plateau or stay in the plain; similarly, in the plateau-dweller role, the
what-if mechanism is used to consider either move plain or stay plateau. When
agents with high boldness in the plain-dweller role choose to stay in the plain,
they violate the norm. When other vengeful agents observe violators, they punish
them unless insufficient vengefulness causes them to violate the metanorm.

5 Prior event calculus models of norms

This section of the paper reviews some research on the use of event calculus in
autonomous agent reasoning to examine the effects of norms.

Alrawagfeh [1] suggests formalising prohibition and obligation norms using event
calculus and offers a method for BDI agents to reason about their behaviour at
runtime while taking into account the norms in effect at the time and previous
actions. Norms are represented by EC rules that initiate fluents with special
meanings. The introduced fluents represent punishments for breaking a prohi-
bition norm or failing to fulfil obligation norms, or the rewards for fulfilling
obligation norms. The normative reasoning strategy assists agents in selecting
the most profitable plan by temporarily asserting to the event calculus the ac-
tions that each plan would generate and considering the punishments and/or
rewards it would trigger.

In Alrawagfeh’s work, norms cannot be changed dynamically without changing
the event calculus rule base, because they are defined by EC initiates clauses.
In contrast, in our approach, EC rules can be instantiated automatically from
exp rule fluents, which can be changed dynamically by events.

Alrawagfeh has no representation of active normss, violations or fulfilments:
only punishments and rewards. In our work, expectation creation, fulfilment,
and violation are represented as events, and the what-if predicate compares
alternative events to track expectation creation, fulfilment, and violation. We do
not assume that rewards and/or punishments will always follow violations and
fulfilments; these could be defined by separate exp _rule or EC indicates clauses.

Hashmi et al. [7] proposed a new EC predicate for modelling all types of legal
norms in order to capture the deontic effects of obligations. They do this to
ensure that a norm enters into force at the same time as the triggering event
occurs. In contrast, our approach does not necessitate the introduction of a new
type of EC predicate in order to initiate a deontic predicate. An exp rule or an
expectation can be created with a standard initiates clause and an exp fluent
is created by an exp rule in the state where the condition of the rule becomes
true. However, the EEC includes additional axioms to deal with the progression
of expectations.

Alrawagfeh and Hashmi et al. both use standard EC, whereas we use discrete
EC because this work involves discrete time simulations.

16 Abira Sengupta, Stephen Cranefield, and Jeremy Pitt

6 Conclusion and future work

In previous work, we used the EEC what-if mechanism for choosing actions in
the presence of expectations how agents adhere to norms and choose actions us-
ing the what-if mechanism. However, we assumed that all agents are hard coded
to avoid expectation-violating actions.

The current work builds on this previous work to remove this assumption, but it
also makes the following significant standalone contribution. It generalises Axel-
rod’s study in which norms are explicitly represented. This allows the metanorm
game to be used across multiple scenarios.

There are several possibilities for future work. Axelrod’s simulated hundreds
of generations, and we are proposing this mechanism in real-time agents with
different scenarios, implying that the learning mechanism must be different. Pop-
ulation evolution would take place in this case over long periods of time, so it’s
not useful. Instead we could use a pairwise comparison approach where an agent
may adopt another agent’s strategy based on a comparison of their respective
fitnesses, using the Fermi equation [15].

Title Suppressed Due to Excessive Length 17

References

1.

10.
11.

12.

13.

14.

15.

Alrawagfeh, W.: Norm representation and reasoning: a formalization in event cal-
culus. In: International Conference on Principles and Practice of Multi-Agent Sys-
tems. pp. 5-20. Springer (2013)

Axelrod, R.: An evolutionary approach to norms. American political science review
80(4), 1095-1111 (1986)

Bicchieri, C.: The grammar of society: The nature and dynamics of social norms.
Cambridge University Press (2005)

Cranefield, S.: Agents and expectations. In: International Workshop on Coordi-
nation, Organizations, Institutions, and Norms in Agent Systems. pp. 234-255.
Springer (2013)

Cranefield, S., Clark-Younger, H., Hay, G.: A collective action simulation platform.
In: Multi-Agent-Based Simulation XX: 20th International Workshop, MABS 2019,
Montreal, QC, Canada, May 13, 2019, Revised Selected Papers 20. pp. 69-80.
Springer (2020)

Galan, J.M., Izquierdo, L.R.: Appearances can be deceiving: Lessons learned re-
implementing axelrod’s evolutionary approach to norms. Journal of Artificial So-
cieties and Social Simulation 8(3) (2005)

Hashmi, M., Governatori, G., Wynn, M.T.: Modeling obligations with event-
calculus. In: Rules on the Web. From Theory to Applications: 8th International
Symposium, RuleML 2014, Co-located with the 21st European Conference on Ar-
tificial Intelligence, ECAI 2014, Prague, Czech Republic, August 18-20, 2014. Pro-
ceedings 8. pp. 296-310. Springer (2014)

Holzinger, K.: The problems of collective action: A new approach. MPI Collective
Goods Preprint No. 2003/2, SSRN (2003), doi:10.2139/ssrn.399140

. Klein, D.B.: The microfoundations of rules vs. discretion. Constitutional Political

Economy 1(3), 1-19 (1990)

Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann (2006)

North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M.,
Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex
Adaptive Systems Modeling 1(1), 3 (2013)

Sengupta, A., Cranefield, S., Pitt, J.: Solving social dilemmas by reasoning about
expectations. In: Coordination, Organizations, Institutions, Norms, and Ethics for
Governance of Multi-Agent Systems XIV: International Workshop, COINE 2021,
London, UK, May 3, 2021, Revised Selected Papers. pp. 143-159. Springer (2022)
Shanahan, M.: The event calculus explained. In: Artificial Intelligence Today, pp.
409-430. Springer (1999)

Thegersen, J.: Social norms and cooperation in real-life social dilemmas. Journal
of economic psychology 29(4), 458-472 (2008)

Wu, B., Bauer, B., Galla, T., Traulsen, A.: Fitness-based models and pairwise com-
parison models of evolutionary games are typically different—even in unstructured
populations. New Journal of Physics 17(2), 023043 (2015)

