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Abstract—Natural methane (CH4) emissions from wet ecosys-
tems are an important part of today’s global warming. Cli-
mate affects the exchange of CH4 between ecosystems and
the atmosphere by influencing CH4 production and oxidation.
The net CH4 exchange depends on ecosystem hydrology and
vegetation characteristics. This study focuses on investigating
methane emissions specifically from rice paddies in West Bengal,
India. The focus is on applying machine learning models to
predict methane emissions based on various factors, including
wind, temperature, precipitation, and pressure. In this study,
we used data from the Copernicus Atmosphere Monitoring
Service (CAMS), specifically the CAMS global greenhouse gas
reanalysis (EGG4). We applied machine learning models, such as
Support Vector Regression, Random Forest, Adaptive Boosting,
XGBoost, and Multi-Layer Perceptron, and optimized their
hyperparameters using the Optuna framework in Python. To assess
the performance of these models, we used 10-fold cross-validation,
which showed that the Multi-Layer Perceptron outperformed
the others. Furthermore, this study highlights the relevance of
hyperparameter adjustment in enhancing model accuracy and
finding significant features, which is very useful in environmental
monitoring applications.

Index Terms—CAMS, Methane, Machine learning, Optuna,
Hyper-parameter Optimisation.

I. INTRODUCTION

Methane is one of the most significant greenhouse gases

in the Earth’s atmosphere. It can absorb infrared light 15–30
times better than carbon dioxide. As a result, it directly

contributes to global warming and climate change [1]. Its

concentration has been increasing at the rate of about 1% per

year [2]. Methane is not only a significant greenhouse gas but

also has an impact on the chemistry and oxidation capacity

of the atmosphere. For example, it can change the amount of

ozone present in the troposphere layer and act as a sink for

chlorine but as a source of hydrogen and water vapour in the

stratosphere [2].

The main sources of methane are wetlands, paddy fields,

ruminants, biomass burning, etc. Wetland rice fields have

recently been identified as a major source of atmospheric

methane. Methane emissions from rice field have been influ-

enced by water management, nitrogen, fertilizer use, organic

input and rice varieties [3]. The anaerobic fermentation of

soil organic matter occurs when the oxygen supply from the

atmosphere is cut off to the soil by the flooded rice field. One

of the main byproducts of anaerobic fermentation is methane.

Through rice plant roots and stems, as well as by diffusion

and ebullition, it is released from submerged soils into the

atmosphere [2]. The best estimates of methane sources are

summarised in Table I, where flooded rice fields emit 50 Tg/yr
of methane annually1. Methane measurements were initiated

under various conditions of paddy fields in West Bengal, India

from 1989 onwards [1].
Several techniques, such as Decision Trees (DT) [4], Ran-

dom Forest (RF) [5], Artificial Neural Network (ANN) [6],

Logistic Regression (LR) [7], and Convolutional Neural Net-

works (CNN) [8], have been used to assess methane emissions

from rice field prediction. In most of these cases, the proposal

of new methodologies involved the empirical comparison of

the performance of the models when applied to methane

emissions prediction. However, less attention has been paid

to efficient methods for establishing optimal Hyper-Parameter
(HP) values for model generation and assessing the importance
of these HPs on model learning.

Therefore, the main goal of this study is to propose a

framework that adopts a well-known HP tuning method to

obtain the values required for the optimal performance of

an ML model. To this end, we employ the Optuna Hyper-
Parameter Optimization (HPO) framework [9] to help us
not only obtain optimal ML models but also provide insight

into the contribution of each hyper-parameter in ML model

learning for regression tasks.

II. MATERIALS AND METHODS

A. Description of the data set

1) Study Area: The entire state of West Bengal, India, is
the subject of the study (Figure 1). According to the State-wise

Rice Productivity Analysis2, rice cultivation is spread across

18 districts in West Bengal, divided into different productivity

categories.

• The high rice productivity group, with yields exceeding
2500 kg/ha, includes the districts of Burdwan, Birbhum,

Nadia, and Hooghly.

11 Tg = 1 million tons [2].
2https://drdpat.bih.nic.in/PA-Table-25-West%20Bengal.htm979-8-3315-1877-6/24/$31.00 ©2024 IEEE
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TABLE I: Estimated sources of methane [2]

Natural
Wetlands 120
Lakes, rivers 20
Oceans 10
Termites 10
Total 160

Anthropogenic
Mining, processing and
use of coal, oil and natural
gas

100

Enteric fermentation 80
Flooded ricefields 50
Biomass burning 30
Landfills 30
Animal waste 30
Domestic sewage 20
Total 340

(a) Worldwide CH4 emission 

(b) CH4 emissions from rice paddies 
in West Bengal, India

Fig. 1: The Copernicus Atmosphere Monitoring Service

(CAMS) global inversion-optimised greenhouse gas fluxes and

concentrations over worldwide from 2003 to 2020.

• The medium productivity group, with yields between

2000 to 2500 kg/ha, consists of districts like 24 Parganas,

Murshidabad, Bankura, Malda, Midnapur, Dinajpur, and

Howrah.

Remote sensing is essential for modeling natural hazards

as it delivers real-time, high-resolution data over large areas,

improving the ability to analyse and predict events such as

floods, wildfires, and earthquakes [10]. Table II presents the

district-wise details of cropped areas in each of the flood

hazard zones for West Bengal, as prepared by the National

Remote Sensing Centre India space research organisation,

the Department of Space Government of India. According to

this study3 Hooghly, Murshidabad, Nadia, Paschim Medinipur,

Purba Barddhaman districts have the maximum cropped area

affected by flood in the years 2000-2020. A map of West

Bengal’s 18 districts’ rice paddies is shown in Figure 1 (b).

2) Data: This dataset is taken from the ECMWF Atmo-

spheric Composition Reanalysis, especially the CAMS global

greenhouse gas reanalysis (EGG4), which spans the period

from 2003 to 2020.4. It focusses on long-lived greenhouse

3https://ndma.gov.in/sites/default/files/PDF/FHA/WB FloodHazardAtlas.
pdf
4https://ads.atmosphere.copernicus.eu/datasets/

cams-global-ghg-reanalysis-egg4?tab=documentation

TABLE II: District-Wise cropped area affected (in Hectares)

in different flood hazard zones

District Very
Low

Low Mode
rate

High Total

ALIPUR
DUAR

762 676 0 0 1438

BANKURA 18744 1045 0 0 19789
BIRBHUM 40069 11700 2004 70 53843
DAKSHIN
DINAJPUR

49871 11792 24 0 61687

HOOGHLY 66888 44611 8068 819 120387
HOWRAH 29869 16246 3796 0 49911
MALDA 50409 46662 3611 0 100682
MURSHI
DABAD

129631 36059 15196 4959 185845

NADIA 182091 24504 1627 24 208245
NORTH 24
PARGANAS

49043 6271 144 0 55457

PASCHIM
ME-
DINIPUR

141638 56538 11806 3638 213620

PURBA
BARD-
DHAMAN

152250 36380 8564 1298 198491

PURBA
ME-
DINIPUR

102706 51400 4264 11 158381

SOUTH 24
PARGANAS

59901 5174 11 0 65086

UTTAR DI-
NAJPUR

54776 13906 1285 0 69967

gases like carbon dioxide (CO2) and methane (CH4). Emis-

sions and natural fluxes at the surface play an important

influence in the atmospheric evolution of these gases.

The chemical loss of CH4 is characterised by a climatolog-

ical loss rate, and surface emissions are sourced from several

databases. The analysis uses a 4D-Var assimilation approach

to assimilate data over a 12-hour period, accounting for the

precise timing of observations and model changes inside the

assimilation window.

This dataset offers worldwide, three-dimensional, time-

consistent fields of atmospheric composition (AC), including

chemical species, aerosols, and greenhouse gases like CH4. It

has a temporal resolution of three hours and is organised in

a gridded manner with a spatial resolution of 0.75◦ × 0.75◦.
The data is organised into multiple vertical layers, including

surface levels, total columns, model levels, and pressure levels.

For our investigation, we received the dataset in NetCDF

format. Methane concentrations around the world are shown

in Figure 1(a).

This study used twenty-five features from the West Bengal

datasets. The key features include Surface Net Solar and
Thermal Radiation, Clear Sky measured in W/m2, which

represents the balance between incoming and outgoing solar

radiation, as well as the net thermal radiation exchange under

clear sky conditions. The CH4 Column-Mean Molar Fraction
(metric ppb or ppm), measures CH4 concentration in a vertical

air column. CH4 Surface Fluxes (Metric g CH4/m
2/day)

estimate the rate of CH4 emission. It helps to identify the

source, such as wetlands. We used this feature as the target

Authorized licensed use limited to: University of Otago. Downloaded on December 21,2024 at 06:13:41 UTC from IEEE Xplore.  Restrictions apply. 



variable in this study.

Additional features include the 10m U-Component and V-
Component of Wind (m/s) (east-west and north-south speed).
The 2m Dewpoint Temperature signifies the temperature at

which air becomes saturated and dew forms at 2m height

(metric C◦). 2m Temperature (air temperature at 2m above

the surface). The Boundary Layer Height (m) represents the
height of the atmospheric boundary layer. Convective Inhibi-
tion (J/kg) and Convective Precipitation (mm) measure energy
for convection and precipitation from convection, respectively.

High Cloud Cover (%) feature is the fraction of the sky
covered by high-altitude clouds. Mean Sea Level Pressure
(hPa) represents the atmospheric pressure at sea level.

The variables include Potential Evaporation (mm), Skin
Reservoir Content (m3/m2) for water stored on soil or veg-

etation, Skin Temperature (C◦), Surface Sensible Heat Flux
(W/m2), and water metrics like Total Column Water (kg/m2)

and Total Column Water Vapour. Every feature provides

information about the interactions between the surface and

atmosphere in the area under study.
3) Data cleansing: The type of ML algorithm and the task

it has been applied to inform the pre-processing of the data.

The XGBC, RF, LGBM, and AdaBoost algorithms did not
require data normalisation. However, for the SVM and MLP
algorithms, the data was standardised to a mean of zero and a

standard deviation. Furthermore, to handle missing values, cor-

recting inaccuracies and removing duplicates we used Python

libraries. We dropped ‘Convective precipitation’, ‘Precipitation

type’, ‘Total precipitation’, ‘Large-scale precipitation’, and

‘Total cloud cover’ due to a high proportion of null values.
4) Experimental Design: As one objective of this work was

to establish better hyper-parameters we adopted the Python

Optuna framework [9]. We adopted Optuna as it claims to

be an agnostic framework that is not tied to any particular

machine learning or deep learning framework. To obtain a

more realistic evaluation of ML model performance given

the HPs selected by the Optuna framework, 10-Fold Cross-

Validation (CV)5 was used to assess the test performance of

each ML model generated across each trial.

To elaborate, for each type of ML algorithm, we ran it over

80 trials, thus generating 80 10-Fold CV ML models. The

average Root Mean Square Error (RMSE) value for regression

obtained from 10-Fold CV was used as the basis for the Tree-

structured Parzen Estimator (TPE) HPO method [11] to adjust

the HPs for the next ML model training. Out of these 80
candidate ML models, the best ML model selected was based

on the lowest average RMSE depending on if the model was

developed for regression respectively. Performance metrics

using 10-Fold CV were obtained from this optimal ML model

of RMSE and Mean Absolute Error (MAE) for regression [8].

All experiments used the MLP, RF, and AdaBoost algo-

rithms from the Python scikit-learn library [12]. The
Python XGBoost implementation was adopted from [13] and

510-Fold Cross-Validation is a robust technique used to evaluate a model’s
performance by splitting the dataset into 10 folds. It ensures that every data
point is used for both training and testing.

[14] respectively and conducted on an Intel i7-13700 PC

desktop system with 32 GB of RAM running Windows 10.

B. Brief description of each of the ML algorithms

In this section, we present our ML model-based methods

for methane emission prediction. Machine learning techniques

have made a substantial contribution to the efficient outcomes

of classification and prediction systems in recent years. While

machine learning relies solely on inventory data, it is not

dependent on expert knowledge. In this study, we adopted

six ML algorithms for methane emission prediction: Random

Forest (RF), Adaptive Boosting (AdaBoost), Extreme Gradi-

ent Boosting (XGBoost), and Multi-Layer Perceptron (MLP),

summarised below:

1) Random Forest: Decision Trees (DTs) are another type
of universal function approximator that falls within the cate-

gory of supervised learning technique [15]. DTs can be applied

to both classifications where predicted responses are discrete

and regression if expected responses are continuous problems.

A popular extension of Decision Trees is the Random Forest

(RF), an ensemble model composed of numerous separately

trained DTs [16]. In an RF model, each component tree makes

a prediction regarding the classification of the input data; the

class receiving the most votes becomes the final classification.

RFs can also perform regression; in this case, the final result

is obtained by averaging the outputs of the individual trees.

The fundamental principle behind the RF technique involves

selecting a random subset of features at each node of every

tree, while bagging resamples of the initial set of data points

to select samples for training each component tree. As the

number of trees in the forest increases, the generalization error

converges to a limit [5].

2) Adaptive Boosting: Among all the theoretically provable
boosting techniques, the most successful one in practical appli-

cations has been Adaptive Boosting (AdaBoost). It combines

the predictions of several weak learners to create a powerful

classifier or regressor.

Its success can be attributed to two things: first, it is very

simple; second, AdaBoost has a feature called “adaptivity” that

other boosting algorithms do not have [17], [18]. AdaBoost

automatically adapts to the strengths of the weak hypotheses

generated by the weak learner. It works by increasing the

weight of observations that were previously misclassified. This

can, in principle, reduce the classification error leading to a

high level of precision.

3) Extreme Gradient Boosting : Extreme Gradient Boost-
ing, or XGBoost is a scalable and extremely effective gradient-

boosting algorithm that is frequently used for machine learning

applications, including regression and classification. XGBoost,

as a classifier, is an enhanced implementation of the gradient

boosting framework that is optimised for performance and

speed [19]. It improves on conventional boosting techniques

by maximising model accuracy and computing speed. The

XGBoost classifier constructs an ensemble of decision trees

sequentially, with each tree aiming to rectify the mistakes of

previous ones. Large-scale classification jobs benefit greatly

Authorized licensed use limited to: University of Otago. Downloaded on December 21,2024 at 06:13:41 UTC from IEEE Xplore.  Restrictions apply. 



from its regularisation approaches, which reduce over-fitting.

It also has several features, such as support for parallel

computation, tree pruning, and handling of missing data. As

a regressor, XGBoost is a more advanced version in terms

of speed and accuracy. An ensemble of regression trees is

constructed by the XGBoost regressor, and each tree is trained

to reduce the residual errors of the trees that came before it. It

improves generalisation ability by introducing regularisation

to control model complexity. XGBoost is also very helpful

for large-scale regression issues because it has features like

missing value handling, tree pruning, and efficient parallel

processing. Regression problems in a variety of applications

have come to rely on XGBoost due to its adept handling of

huge datasets and complex patterns.
4) Multi-layer Perceptron: Multi-layer perceptrons (MLPs)

are neural networks that process a single input with multiple

independent weights by combining many neuron units in

parallel. To accommodate generic functions, additional degrees

of freedom can be provided by adding a second layer of hidden

neuron units. Simple classification and regression issues can be

resolved with MLPs. In a classification work, for example, the

output is the expected class for the input data; in a regression

work, on the other hand, the output is the regressed value for

the input data. MLP can distinguish data that is not linearly

separable or separable by a hyperplane. MLP networks are

flexible, general-purpose, nonlinear models made up of several

units arranged into multiple layers [20].

C. Results and Discussion

Hyperparameter tuning plays a vital role in influencing

feature importance in machine learning by enhancing model

performance and identifying the most impactful variables.

Correctly adjusting hyperparameters improves the model’s

capacity to accurately assess feature relevance, resulting in

greater predictive accuracy and interpretability. This is impor-

tant in modeling natural hazard-related predictions [21], [22].

Table III shows details of the HPs used for producing the

optimal ML models for regression.

Results of models built using the CAMS WestBengal data

set as shown in Table IV that this time the better-performing

ML model is MLP across all metrics. It has the lowest RMSE
and MAE values and the highest R2 score compared with

other ML models of this work, whereas RF is the least-

performing model. We then extracted SHAP values to check

the impact of the features on the ML model6. Longitude,

latitude, and time of year were the most important features

according to most of the models.

Figure 2 and Figure 3 presented which HPs contribute
most to each model learning and performance. C is the

most important hyperparameter in the SVR model (Figure 2).
For the RF model, the minimum sample split contributes the
most (38%), followed by maximum depth (25%), while the
criterion contributes only 1% (Figure 2). In the DTR model,
max depth and min samples leaf contribute 45% and 30%,
respectively, whereas max features and criterion contribute less

6https://github.com/abira-sengupta/Methane-Rice-paddies

than 1% (Figure 2). In the AdaBoost model, there are two
essential hyperparameters, in which n estimators accounting
for 59% (Figure 3). Eta and gamma contribute 20% and 19%,
respectively, to the XGBoost model, while the objective and
eval metric contribute less than 1% each (Figure 3). In the

MLPR model, the learning rate init has the greatest impact
(49%), with the solver and activation contributing 1% and less

than 1%, respectively (Figure 3).

TABLE III: Models and HPs for regression.

Model Hyper-parameters
SVR C = 0.737379, degree = 16, gamma = ‘auto’,

kernel = ‘rbf’
DTR max features = [‘sqrt’, ‘log2’], max depth = 2, 10,

min samples split = 2, 20, min samples leaf=1, 20,
splitter = [‘best’, ‘random’],
criterion = [‘squared error’, ‘absolute error’,
‘friedman mse’, ‘poisson’]

RF criterion = ‘poisson’, max depth = 2,
max samples = 0.651752,
min samples leaf = 0.189317,
min samples split = 0.449878, n estimators = 23

Ada
Boost

learning rate = 0.014532, n estimators = 110

XGBR eta = 0.027458, eval metric = ‘rmse’, gamma = 0.771812,
max depth = 5, max leaves = 5, min child weight = 1,
n estimators = 99

MLP activation = ‘logistic’, alpha = 0.000842,
hidden layer sizes = 14, learning rate = ‘adaptive’,
learning rate init = 0.003694,
max iter = 265, momentum = 0.071646, solver = ‘sgd’

TABLE IV: Regression model test results using 10-Fold CV.

Model RMSE MAE R2

SVR 0.3554±0.0742 0.3305±0.0286 0.6472±0.0334
DTR 0.6694±0.1272 0.5783±0.0600 0.3318±0.0679
RF 0.784±0.1223 0.6299±0.0457 0.2163±0.0338

AdaBoost 0.1219±0.0114 0.2817±0.0153 0.8769±0.0114
XGBR 0.0477±0.0099 0.1488±0.0124 0.9524±0.0057
MLP 0.0091±0.0024 0.0739±0.0088 0.9905±0.0037

III. THREATS TO VALIDITY AND LIMITATIONS

We acknowledge that there are some uncontrolled factors

that might have impacted the results reported in our study.

For example, the ML models performed well for regression

tasks, but only on small datasets from a small part of India

and during a limited time period. Additionally, single-level

emissions meteorological data, single-level chemical vertical

integrals, and single-level radiation data were downloaded

from the CAMS global greenhouse gas reanalysis (EGG4)

source. We did not choose multi-level meteorological data,

hence we do not have any pressure level or model-level

datasets. The impact on model performance, when the analysis

is scaled to a complete country using multi-level data, is a

question for ongoing research.

Furthermore, several features include null values, thus we

removed those columns during data cleaning to improve the

ML models’ efficacy. In the future, it is expected that data

produced by more recent climate forecasting models will

mitigate this problem.

Additionally, adequate resolution of location-specific gran-

ular data will improve model performance by including more

Authorized licensed use limited to: University of Otago. Downloaded on December 21,2024 at 06:13:41 UTC from IEEE Xplore.  Restrictions apply. 
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RFR

SVR

Fig. 2: HP importances for the SVR, RF and DTR models.

XGBR

MLPR

ABR

Fig. 3: HP importances for the ABR, XGBR and MLPR

models.
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precise location-based data obtained from handheld sensors

or wireless sensor networks. Higher resolution satellite or

drone-based photos could also help to acquire correct fluxes

or concentration of methane emissions but potentially incur a

higher financial cost to obtain.

Another risk was that the ML models created would be at

risk of overfitting. Our methodology addressed this possible

risk by using a 10-fold CV when determining the optimum

HPs for a certain ML model type. Using CV was intended to

lower the danger of over-fitting and improve the ML model’s

capacity to generalise to new data.

Finally, the ML models were created using currently avail-

able Python modules that implement existing learning tech-

niques. In addition to limiting the use of other suitable

ML methods for methane emission analysis, the dependence

on these Python libraries neglected to take non-ML-based

approaches into consideration. Despite this, our methodology

was regularly deployed across many geographic areas, en-

abling model re-usability. Future testing of our framework in

various environmental and geographical contexts can help to

validate our study strategy.

IV. CONCLUSION

In this work, we have proposed a framework that combines

current research on generating optimal ML models to predict

methane emissions from rice paddies in West Bengal, India.

Various machine-learning techniques were employed to esti-

mate methane emissions based on critical factors such as wind,

temperature, precipitation, and pressure.

Major findings of our work identified which HPs were the

most influential in generating ML models and highlighted that

the MLP regression would be a more appropriate ML model

for predicting CH4 emissions among the other models and

underscore the importance of selecting appropriate machine

learning algorithms and optimizing hyperparameters to en-

hance predictive performance.

Furthermore, in this study, a selected dataset from CAMS

global greenhouse gas reanalysis (EGG4) highlights the sig-

nificance of particular variables, such as CH4 surface fluxes

to identify sources and measured methane emissions from

a specific region. These insights can help policymakers and

agricultural stakeholders design more targeted interventions to

mitigate methane emissions and contribute to climate change

mitigation efforts. Future research could expand this work

by integrating more granular data and considering additional

environmental factors.
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